import os from dotenv import load_dotenv from llama_index import (Document, GPTSimpleVectorIndex, LLMPredictor, ServiceContext) from data.prepare import data from .customLLM import CustomLLM, prompt_helper load_dotenv() #define our llm llm_predictor = LLMPredictor(llm=CustomLLM()) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) def initialize_index(index_name): if os.path.exists(index_name): return GPTSimpleVectorIndex.load_from_disk(index_name) else: documents = [Document(d) for d in data] index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) index.save_to_disk(index_name) return index