import os import openai from dotenv import load_dotenv from langchain.chains import LLMChain from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.vectorstores import FAISS load_dotenv() embeddings = OpenAIEmbeddings() prompt_template = """Answer the question using the given context to the best of your ability. If you don't know, answer I don't know. Context: {context} Topic: {topic}""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "topic"] ) llm = OpenAI(temperature=0) chain = LLMChain(llm=llm, prompt=PROMPT) def initialize_index(index_name): path = f"./vectorStores/{index_name}" if os.path.exists(path=path): return FAISS.load_local(folder_path=path, embeddings=embeddings) else: faiss = FAISS.from_texts("./data/updated_calregs.txt", embedding=embeddings) faiss.save_local(path) return faiss # faiss = initialize_index("langOpen") def answer_question(index, input): docs = index.similarity_search(input, k=4) inputs = [{"context": doc.page_content, "topic": input} for doc in docs] result = chain.apply(inputs)[0]['text'] return result