Spaces:
Runtime error
Runtime error
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sentence_transformers import SentenceTransformer | |
import os | |
def embedding(documents, embedding='bert'): | |
if embedding == 'bert': | |
sbert_model = SentenceTransformer('bert-base-nli-mean-tokens', cache_folder=os.path.join(os.getcwd(), 'embedding')) | |
document_embeddings = sbert_model.encode(documents) | |
return document_embeddings | |
if embedding == 'minilm': | |
sbert_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', cache_folder=os.path.join(os.getcwd(), 'embedding')) | |
document_embeddings = sbert_model.encode(documents) | |
return document_embeddings | |
if embedding == 'tfidf': | |
word_vectorizer = TfidfVectorizer( | |
sublinear_tf=True, stop_words='english') | |
word_vectorizer.fit(documents) | |
word_features = word_vectorizer.transform(documents) | |
return word_features | |