Zihao Wang
commited on
Commit
•
3119d85
1
Parent(s):
ba30d19
update sk
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from langchain.tools import Tool
|
3 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
4 |
-
import os
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
search = GoogleSearchAPIWrapper(k=k)
|
8 |
def search_results(query):
|
9 |
return search.results(query, k)
|
@@ -13,17 +17,416 @@ def get_search(query:str="", k:int=1):
|
|
13 |
func=search_results,
|
14 |
)
|
15 |
ref_text = tool.run(query)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain.tools import Tool
|
3 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
4 |
+
import os
|
5 |
+
|
6 |
+
from langchain.tools import Tool
|
7 |
+
from langchain_community.utilities import GoogleSearchAPIWrapper
|
8 |
|
9 |
+
|
10 |
+
def get_search(query:str="", k:int=1): # get the top-k resources with google
|
11 |
search = GoogleSearchAPIWrapper(k=k)
|
12 |
def search_results(query):
|
13 |
return search.results(query, k)
|
|
|
17 |
func=search_results,
|
18 |
)
|
19 |
ref_text = tool.run(query)
|
20 |
+
if 'Result' not in ref_text[0].keys():
|
21 |
+
return ref_text
|
22 |
+
else:
|
23 |
+
return None
|
24 |
+
|
25 |
+
from langchain_community.document_transformers import Html2TextTransformer
|
26 |
+
from langchain_community.document_loaders import AsyncHtmlLoader
|
27 |
+
def get_page_content(link:str):
|
28 |
+
loader = AsyncHtmlLoader([link])
|
29 |
+
docs = loader.load()
|
30 |
+
html2text = Html2TextTransformer()
|
31 |
+
docs_transformed = html2text.transform_documents(docs)
|
32 |
+
if len(docs_transformed) > 0:
|
33 |
+
return docs_transformed[0].page_content
|
34 |
+
else:
|
35 |
+
return None
|
36 |
+
|
37 |
+
import tiktoken
|
38 |
+
def num_tokens_from_string(string: str, encoding_name: str = "cl100k_base") -> int:
|
39 |
+
"""Returns the number of tokens in a text string."""
|
40 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
41 |
+
num_tokens = len(encoding.encode(string))
|
42 |
+
return num_tokens
|
43 |
+
|
44 |
+
def chunk_text_by_sentence(text, chunk_size=2048):
|
45 |
+
"""Chunk the $text into sentences with less than 2k tokens."""
|
46 |
+
sentences = text.split('. ')
|
47 |
+
chunked_text = []
|
48 |
+
curr_chunk = []
|
49 |
+
# 逐句添加文本片段,确保每个段落都小于2k个token
|
50 |
+
for sentence in sentences:
|
51 |
+
if num_tokens_from_string(". ".join(curr_chunk)) + num_tokens_from_string(sentence) + 2 <= chunk_size:
|
52 |
+
curr_chunk.append(sentence)
|
53 |
+
else:
|
54 |
+
chunked_text.append(". ".join(curr_chunk))
|
55 |
+
curr_chunk = [sentence]
|
56 |
+
# 添加最后一个片段
|
57 |
+
if curr_chunk:
|
58 |
+
chunked_text.append(". ".join(curr_chunk))
|
59 |
+
return chunked_text[0]
|
60 |
+
|
61 |
+
def chunk_text_front(text, chunk_size = 2048):
|
62 |
+
'''
|
63 |
+
get the first `trunk_size` token of text
|
64 |
+
'''
|
65 |
+
chunked_text = ""
|
66 |
+
tokens = num_tokens_from_string(text)
|
67 |
+
if tokens < chunk_size:
|
68 |
+
return text
|
69 |
+
else:
|
70 |
+
ratio = float(chunk_size) / tokens
|
71 |
+
char_num = int(len(text) * ratio)
|
72 |
+
return text[:char_num]
|
73 |
+
|
74 |
+
def chunk_texts(text, chunk_size = 2048):
|
75 |
+
'''
|
76 |
+
trunk the text into n parts, return a list of text
|
77 |
+
[text, text, text]
|
78 |
+
'''
|
79 |
+
tokens = num_tokens_from_string(text)
|
80 |
+
if tokens < chunk_size:
|
81 |
+
return [text]
|
82 |
+
else:
|
83 |
+
texts = []
|
84 |
+
n = int(tokens/chunk_size) + 1
|
85 |
+
# 计算每个部分的长度
|
86 |
+
part_length = len(text) // n
|
87 |
+
# 如果不能整除,则最后一个部分会包含额外的字符
|
88 |
+
extra = len(text) % n
|
89 |
+
parts = []
|
90 |
+
start = 0
|
91 |
+
|
92 |
+
for i in range(n):
|
93 |
+
# 对于前extra个部分,每个部分多分配一个字符
|
94 |
+
end = start + part_length + (1 if i < extra else 0)
|
95 |
+
parts.append(text[start:end])
|
96 |
+
start = end
|
97 |
+
return parts
|
98 |
+
|
99 |
+
from datetime import datetime
|
100 |
+
from utils import *
|
101 |
+
|
102 |
+
from openai import OpenAI
|
103 |
+
import os
|
104 |
+
|
105 |
+
chatgpt_system_prompt = f'''
|
106 |
+
You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.
|
107 |
+
Knowledge cutoff: 2023-04
|
108 |
+
Current date: {datetime.now().strftime('%Y-%m-%d')}
|
109 |
+
'''
|
110 |
+
|
111 |
+
def get_draft(question):
|
112 |
+
# Getting the draft answer
|
113 |
+
draft_prompt = '''
|
114 |
+
IMPORTANT:
|
115 |
+
Try to answer this question/instruction with step-by-step thoughts and make the answer more structural.
|
116 |
+
Use `\n\n` to split the answer into several paragraphs.
|
117 |
+
Just respond to the instruction directly. DO NOT add additional explanations or introducement in the answer unless you are asked to.
|
118 |
+
'''
|
119 |
+
openai_client = OpenAI()
|
120 |
+
draft = openai_client.chat.completions.create(
|
121 |
+
model="gpt-3.5-turbo",
|
122 |
+
messages=[
|
123 |
+
{
|
124 |
+
"role": "system",
|
125 |
+
"content": chatgpt_system_prompt
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"role": "user",
|
129 |
+
"content": f"{question}" + draft_prompt
|
130 |
+
}
|
131 |
+
],
|
132 |
+
temperature = 1.0
|
133 |
+
).choices[0].message.content
|
134 |
+
return draft
|
135 |
+
|
136 |
+
def split_draft(draft, split_char = '\n\n'):
|
137 |
+
# 将draft切分为多个段落
|
138 |
+
# split_char: '\n\n'
|
139 |
+
draft_paragraphs = draft.split(split_char)
|
140 |
+
draft_paragraphs = [d for d in draft_paragraphs if d]
|
141 |
+
# print(f"The draft answer has {len(draft_paragraphs)}")
|
142 |
+
return draft_paragraphs
|
143 |
+
|
144 |
+
def get_query(question, answer):
|
145 |
+
query_prompt = '''
|
146 |
+
I want to verify the content correctness of the given question, especially the last sentences.
|
147 |
+
Please summarize the content with the corresponding question.
|
148 |
+
This summarization will be used as a query to search with Bing search engine.
|
149 |
+
The query should be short but need to be specific to promise Bing can find related knowledge or pages.
|
150 |
+
You can also use search syntax to make the query short and clear enough for the search engine to find relevant language data.
|
151 |
+
Try to make the query as relevant as possible to the last few sentences in the content.
|
152 |
+
**IMPORTANT**
|
153 |
+
Just output the query directly. DO NOT add additional explanations or introducement in the answer unless you are asked to.
|
154 |
+
'''
|
155 |
+
openai_client = OpenAI()
|
156 |
+
query = openai_client.chat.completions.create(
|
157 |
+
model="gpt-3.5-turbo",
|
158 |
+
messages=[
|
159 |
+
{
|
160 |
+
"role": "system",
|
161 |
+
"content": chatgpt_system_prompt
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"role": "user",
|
165 |
+
"content": f"##Question: {question}\n\n##Content: {answer}\n\n##Instruction: {query_prompt}"
|
166 |
+
}
|
167 |
+
],
|
168 |
+
temperature = 1.0
|
169 |
+
).choices[0].message.content
|
170 |
+
return query
|
171 |
+
|
172 |
+
def get_content(query):
|
173 |
+
res = get_search(query, 1)
|
174 |
+
if not res:
|
175 |
+
print(">>> No good Google Search Result was found")
|
176 |
+
return None
|
177 |
+
search_results = res[0]
|
178 |
+
link = search_results['link'] # title, snippet
|
179 |
+
res = get_page_content(link)
|
180 |
+
if not res:
|
181 |
+
print(f">>> No content was found in {link}")
|
182 |
+
return None
|
183 |
+
retrieved_text = res
|
184 |
+
trunked_texts = chunk_texts(retrieved_text, 1500)
|
185 |
+
trunked_texts = [trunked_text.replace('\n', " ") for trunked_text in trunked_texts]
|
186 |
+
return trunked_texts
|
187 |
+
|
188 |
+
def get_revise_answer(question, answer, content):
|
189 |
+
revise_prompt = '''
|
190 |
+
I want to revise the answer according to retrieved related text of the question in WIKI pages.
|
191 |
+
You need to check whether the answer is correct.
|
192 |
+
If you find some errors in the answer, revise the answer to make it better.
|
193 |
+
If you find some necessary details are ignored, add it to make the answer more plausible according to the related text.
|
194 |
+
If you find the answer is right and do not need to add more details, just output the original answer directly.
|
195 |
+
**IMPORTANT**
|
196 |
+
Try to keep the structure (multiple paragraphs with its subtitles) in the revised answer and make it more structual for understanding.
|
197 |
+
Add more details from retrieved text to the answer.
|
198 |
+
Split the paragraphs with `\n\n` characters.
|
199 |
+
Just output the revised answer directly. DO NOT add additional explanations or annoucement in the revised answer unless you are asked to.
|
200 |
+
'''
|
201 |
+
openai_client = OpenAI()
|
202 |
+
revised_answer = openai_client.chat.completions.create(
|
203 |
+
model="gpt-3.5-turbo",
|
204 |
+
messages=[
|
205 |
+
{
|
206 |
+
"role": "system",
|
207 |
+
"content": chatgpt_system_prompt
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"role": "user",
|
211 |
+
"content": f"##Existing Text in Wiki Web: {content}\n\n##Question: {question}\n\n##Answer: {answer}\n\n##Instruction: {revise_prompt}"
|
212 |
+
}
|
213 |
+
],
|
214 |
+
temperature = 1.0
|
215 |
+
).choices[0].message.content
|
216 |
+
return revised_answer
|
217 |
+
|
218 |
+
def get_query_wrapper(q, question, answer):
|
219 |
+
result = get_query(question, answer)
|
220 |
+
q.put(result) # 将结果放入队列
|
221 |
+
|
222 |
+
def get_content_wrapper(q, query):
|
223 |
+
result = get_content(query)
|
224 |
+
q.put(result) # 将结果放入队列
|
225 |
+
|
226 |
+
def get_revise_answer_wrapper(q, question, answer, content):
|
227 |
+
result = get_revise_answer(question, answer, content)
|
228 |
+
q.put(result)
|
229 |
+
|
230 |
+
from multiprocessing import Process, Queue
|
231 |
+
def run_with_timeout(func, timeout, *args, **kwargs):
|
232 |
+
q = Queue() # 创建一个Queue对象用于进程间通信
|
233 |
+
# 创建一个进程来执行传入的函数,将Queue和其他*args、**kwargs作为参数传递
|
234 |
+
p = Process(target=func, args=(q, *args), kwargs=kwargs)
|
235 |
+
p.start()
|
236 |
+
# 等待进程完成或超时
|
237 |
+
p.join(timeout)
|
238 |
+
if p.is_alive():
|
239 |
+
print(f"{datetime.now()} [INFO] 函数{str(func)}执行已超时({timeout}s),正在终止进程...")
|
240 |
+
p.terminate() # 终止进程
|
241 |
+
p.join() # 确保进程已经终止
|
242 |
+
result = None # 超时情况下,我们没有结果
|
243 |
+
else:
|
244 |
+
print(f"{datetime.now()} [INFO] 函数{str(func)}执行成功完成")
|
245 |
+
result = q.get() # 从队列中获取结果
|
246 |
+
return result
|
247 |
+
|
248 |
+
from difflib import unified_diff
|
249 |
+
from IPython.display import display, HTML
|
250 |
+
|
251 |
+
def generate_diff_html(text1, text2):
|
252 |
+
diff = unified_diff(text1.splitlines(keepends=True),
|
253 |
+
text2.splitlines(keepends=True),
|
254 |
+
fromfile='text1', tofile='text2')
|
255 |
|
256 |
+
diff_html = ""
|
257 |
+
for line in diff:
|
258 |
+
if line.startswith('+'):
|
259 |
+
diff_html += f"<div style='color:green;'>{line.rstrip()}</div>"
|
260 |
+
elif line.startswith('-'):
|
261 |
+
diff_html += f"<div style='color:red;'>{line.rstrip()}</div>"
|
262 |
+
elif line.startswith('@'):
|
263 |
+
diff_html += f"<div style='color:blue;'>{line.rstrip()}</div>"
|
264 |
+
else:
|
265 |
+
diff_html += f"{line.rstrip()}<br>"
|
266 |
+
return diff_html
|
267 |
|
268 |
+
newline_char = '\n'
|
269 |
+
|
270 |
+
def rat(question):
|
271 |
+
print(f"{datetime.now()} [INFO] 生成草稿中...")
|
272 |
+
draft = get_draft(question)
|
273 |
+
print(f"{datetime.now()} [INFO] 获得草稿")
|
274 |
+
# print(f"##################### DRAFT #######################")
|
275 |
+
# print(draft)
|
276 |
+
# print(f"##################### END #######################")
|
277 |
+
|
278 |
+
print(f"{datetime.now()} [INFO] 处理草稿...")
|
279 |
+
draft_paragraphs = split_draft(draft)
|
280 |
+
print(f"{datetime.now()} [INFO] 草稿被切分为{len(draft_paragraphs)}部分")
|
281 |
+
answer = ""
|
282 |
+
for i, p in enumerate(draft_paragraphs):
|
283 |
+
print(str(i)*80)
|
284 |
+
print(f"{datetime.now()} [INFO] 修改第{i+1}/{len(draft_paragraphs)}部分...")
|
285 |
+
answer = answer + '\n\n' + p
|
286 |
+
# print(f"[{i}/{len(draft_paragraphs)}] Original Answer:\n{answer.replace(newline_char, ' ')}")
|
287 |
+
|
288 |
+
# query = get_query(question, answer)
|
289 |
+
print(f"{datetime.now()} [INFO] 生成对应Query...")
|
290 |
+
res = run_with_timeout(get_query_wrapper, 3, question, answer)
|
291 |
+
if not res:
|
292 |
+
print(f"{datetime.now()} [INFO] 生成检索词超时,跳过后续步骤...")
|
293 |
+
continue
|
294 |
+
else:
|
295 |
+
query = res
|
296 |
+
print(f">>> {i}/{len(draft_paragraphs)} Query: {query.replace(newline_char, ' ')}")
|
297 |
+
|
298 |
+
print(f"{datetime.now()} [INFO] 获取网页内容...")
|
299 |
+
# content = get_content(query)
|
300 |
+
res = run_with_timeout(get_content_wrapper, 5, query)
|
301 |
+
if not res:
|
302 |
+
print(f"{datetime.now()} [INFO] 获取网页内容超时,跳过后续步骤...")
|
303 |
+
continue
|
304 |
+
else:
|
305 |
+
content = res
|
306 |
+
|
307 |
+
for j, c in enumerate(content):
|
308 |
+
if j > 2:
|
309 |
+
break
|
310 |
+
print(f"{datetime.now()} [INFO] 根据网页内容修改对应答案...[{j}/{min(len(content),3)}]")
|
311 |
+
# answer = get_revise_answer(question, answer, c)
|
312 |
+
res = run_with_timeout(get_revise_answer_wrapper, 15, question, answer, c)
|
313 |
+
if not res:
|
314 |
+
print(f"{datetime.now()} [INFO] 修改答案超时,跳过后续步骤...")
|
315 |
+
continue
|
316 |
+
else:
|
317 |
+
diff_html = generate_diff_html(answer, res)
|
318 |
+
display(HTML(diff_html))
|
319 |
+
answer = res
|
320 |
+
print(f"{datetime.now()} [INFO] 答案修改完成[{j}/{min(len(content),3)}]")
|
321 |
+
# print(f"[{i}/{len(draft_paragraphs)}] REVISED ANSWER:\n {answer.replace(newline_char, ' ')}")
|
322 |
+
# print()
|
323 |
+
return draft, answer
|
324 |
+
# return answer
|
325 |
+
|
326 |
+
from utils import *
|
327 |
+
|
328 |
+
page_title = "RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation"
|
329 |
+
page_md = """
|
330 |
+
# RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
|
331 |
+
|
332 |
+
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method — retrieval-augmented thoughts (RAT) — revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated.
|
333 |
+
|
334 |
+
Applying RAT to various base models substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning.
|
335 |
+
|
336 |
+
Feel free to try our demo!
|
337 |
+
|
338 |
+
"""
|
339 |
+
|
340 |
+
def clear_func():
|
341 |
+
return "", "", ""
|
342 |
+
|
343 |
+
def set_openai_api_key(api_key):
|
344 |
+
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
|
345 |
+
import openai
|
346 |
+
openai.api_key = api_key
|
347 |
+
|
348 |
+
with gr.Blocks(title = page_title) as demo:
|
349 |
+
|
350 |
+
gr.Markdown(page_md)
|
351 |
+
|
352 |
+
with gr.Row():
|
353 |
+
chatgpt_box = gr.Textbox(
|
354 |
+
label = "ChatGPT",
|
355 |
+
placeholder = "Response from ChatGPT with zero-shot chain-of-thought.",
|
356 |
+
elem_id = "chatgpt"
|
357 |
+
)
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
stream_box = gr.Textbox(
|
361 |
+
label = "Streaming",
|
362 |
+
placeholder = "Interactive response with RAT...",
|
363 |
+
elem_id = "stream",
|
364 |
+
lines = 10,
|
365 |
+
visible = False
|
366 |
+
)
|
367 |
|
368 |
+
with gr.Row():
|
369 |
+
rat_box = gr.Textbox(
|
370 |
+
label = "RAT",
|
371 |
+
placeholder = "Final response with RAT ...",
|
372 |
+
elem_id = "rat",
|
373 |
+
lines = 6
|
374 |
+
)
|
375 |
+
|
376 |
+
with gr.Column(elem_id="instruction_row"):
|
377 |
+
with gr.Row():
|
378 |
+
instruction_box = gr.Textbox(
|
379 |
+
label = "instruction",
|
380 |
+
placeholder = "Enter your instruction here",
|
381 |
+
lines = 2,
|
382 |
+
elem_id="instruction",
|
383 |
+
interactive=True,
|
384 |
+
visible=True
|
385 |
+
)
|
386 |
+
with gr.Row():
|
387 |
+
model_radio = gr.Radio(["gpt-3.5-turbo", "gpt-4", "GPT-4-turbo"], elem_id="model_radio", value="gpt-3.5-turbo",
|
388 |
+
label='GPT model: ', show_label=True,interactive=True, visible=True)
|
389 |
+
openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
|
390 |
+
show_label=False, lines=1, type='password')
|
391 |
+
|
392 |
+
openai_api_key_textbox.change(set_openai_api_key,
|
393 |
+
inputs=[openai_api_key_textbox],
|
394 |
+
outputs=[])
|
395 |
+
|
396 |
+
with gr.Row():
|
397 |
+
submit_btn = gr.Button(
|
398 |
+
value="submit", visible=True, interactive=True
|
399 |
+
)
|
400 |
+
clear_btn = gr.Button(
|
401 |
+
value="clear", visible=True, interactive=True
|
402 |
+
)
|
403 |
+
regenerate_btn = gr.Button(
|
404 |
+
value="regenerate", visible=True, interactive=True
|
405 |
+
)
|
406 |
+
|
407 |
+
submit_btn.click(
|
408 |
+
fn = rat,
|
409 |
+
inputs = [instruction_box],
|
410 |
+
outputs = [chatgpt_box, rat_box]
|
411 |
+
)
|
412 |
+
|
413 |
+
clear_btn.click(
|
414 |
+
fn = clear_func,
|
415 |
+
inputs = [],
|
416 |
+
outputs = [instruction_box, chatgpt_box, rat_box]
|
417 |
+
)
|
418 |
+
|
419 |
+
regenerate_btn.click(
|
420 |
+
fn = rat,
|
421 |
+
inputs = [instruction_box],
|
422 |
+
outputs = [chatgpt_box, rat_box]
|
423 |
+
)
|
424 |
+
|
425 |
+
examples = gr.Examples(
|
426 |
+
examples=[
|
427 |
+
"I went to the supermarket yesterday.",
|
428 |
+
"Helen is a good swimmer."],
|
429 |
+
inputs=[instruction_box]
|
430 |
+
)
|
431 |
+
|
432 |
+
demo.launch(server_name="0.0.0.0", debug=True)
|