File size: 15,008 Bytes
1f418ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
import wandb
import numpy as np
import torch
import mmengine
from mmengine.optim import build_optim_wrapper
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.distributed as dist
from mmengine.dist import get_dist_info, collect_results_cpu, collect_results_gpu
from mmengine import print_log
import torch.nn.functional as F
from tqdm import tqdm
from estimator.utils import colorize

class Trainer:
    """
    Trainer class
    """
    def __init__(
        self, 
        config,
        runner_info,
        train_sampler,
        train_dataloader,
        val_dataloader,
        model):
       
        self.config = config
        self.runner_info = runner_info
        
        self.train_sampler = train_sampler
        self.train_dataloader = train_dataloader
        self.val_dataloader = val_dataloader
        self.model = model

        # build opt and schedule
        self.optimizer_wrapper = build_optim_wrapper(self.model, config.optim_wrapper)
        self.scheduler = optim.lr_scheduler.OneCycleLR(
            self.optimizer_wrapper.optimizer, [l['lr'] for l in self.optimizer_wrapper.optimizer.param_groups], epochs=self.config.train_cfg.max_epochs, steps_per_epoch=len(self.train_dataloader),
            cycle_momentum=config.param_scheduler.cycle_momentum, base_momentum=config.param_scheduler.get('base_momentum', 0.85), max_momentum=config.param_scheduler.get('max_momentum', 0.95),
            div_factor=config.param_scheduler.div_factor, final_div_factor=config.param_scheduler.final_div_factor, pct_start=config.param_scheduler.pct_start, three_phase=config.param_scheduler.three_phase)
    
        # I'd like use wandb log_name
        self.train_step = 0 # for training
        self.val_step = 0 # for validation

        self.iters_per_train_epoch = len(self.train_dataloader)
        self.iters_per_val_epoch = len(self.val_dataloader)
        self.grad_scaler = torch.cuda.amp.GradScaler()
        self.collect_input_args = config.collect_input_args
        print_log('successfully init trainer', logger='current')
    
    
    def log_images(self, log_dict, prefix="", scalar_cmap="turbo_r", min_depth=1e-3, max_depth=80, step=0):
        # Custom log images. Please add more items to the log dict returned from the model
        
        wimages = dict()
        wimages['{}/step'.format(prefix)] = step
        
        rgb = log_dict.get('rgb')[0]
        _, h_rgb, w_rgb = rgb.shape
        
        if 'depth_pred' in log_dict.keys():
            depth_pred = log_dict.get('depth_pred')[0]
            depth_pred = depth_pred.squeeze()
            depth_gt = log_dict.get('depth_gt')[0]
            depth_gt = depth_gt.squeeze()
            invalid_mask = torch.logical_or(depth_gt<=min_depth, depth_gt>=max_depth).detach().cpu().squeeze().numpy() # (h, w)
            
            if np.sum(np.logical_not(invalid_mask)) == 0: # all pixels in gt are invalid
                return
            
            depth_gt_color = colorize(depth_gt, vmin=None, vmax=None, invalid_mask=invalid_mask, cmap=scalar_cmap)
            depth_pred_color = colorize(depth_pred, vmin=None, vmax=None)
            
            depth_gt_img = wandb.Image(depth_gt_color, caption='depth_gt')
            depth_pred_img = wandb.Image(depth_pred_color, caption='depth_pred')
            rgb = wandb.Image(rgb, caption='rgb')
            
            wimages['{}/LogImageDepth'.format(prefix)] = [rgb, depth_gt_img, depth_pred_img]
            
        if 'seg_pred' in log_dict.keys():
            seg_pred = log_dict.get('seg_pred')[0]
            seg_pred = seg_pred.squeeze()
            seg_gt = log_dict.get('seg_gt')[0]
            seg_gt = seg_gt.squeeze()
            # class_labels = {0: "good", 1: "refine", 2: "oor", 3: "sky"}
            class_labels = {0: "bg", 1: "edge"}
            
            mask_img = wandb.Image(
                rgb,
                masks={
                    "predictions": {"mask_data": seg_pred.detach().cpu().numpy(), "class_labels": class_labels},
                    "ground_truth": {"mask_data": seg_gt.detach().cpu().numpy(), "class_labels": class_labels},
                },
                caption='segmentation')
            wimages['{}/LogImageSeg'.format(prefix)] = [mask_img]
        
        if 'mask' in log_dict.keys():
            mask = log_dict.get('mask')[0]
            mask = mask.squeeze().float()*255
            mask_img = wandb.Image(
                mask.detach().cpu().numpy(),
                caption='segmentation')
            cur_log = wimages['{}/LogImageDepth'.format(prefix)]
            cur_log.append(mask_img)
            wimages['{}/LogImageDepth'.format(prefix)] = cur_log
        
        # some other things
        if 'pseudo_gt' in log_dict.keys():
            pseudo_gt = log_dict.get('pseudo_gt')[0]
            pseudo_gt = pseudo_gt.squeeze()
            pseudo_gt_color = colorize(pseudo_gt, vmin=None, vmax=None, cmap=scalar_cmap)
            pseudo_gt_img = wandb.Image(pseudo_gt_color, caption='pseudo_gt')
            cur_log = wimages['{}/LogImageDepth'.format(prefix)]
            cur_log.append(pseudo_gt_img)
            # pseudo_gt = log_dict.get('pseudo_gt')[0][0]
            # pseudo_gt = pseudo_gt * 255
            # pseudo_gt = pseudo_gt.astype(np.uint8)
            # pseudo_gt_img = wandb.Image(pseudo_gt, caption='pseudo_gt')
            # cur_log = wimages['{}/LogImageDepth'.format(prefix)]
            # cur_log.append(pseudo_gt_img)
            
        wandb.log(wimages)
            

    def collect_input(self, batch_data):
        collect_batch_data = dict()
        for k, v in batch_data.items():
            if isinstance(v, torch.Tensor):
                if k in self.collect_input_args:
                    collect_batch_data[k] = v.cuda()
        return collect_batch_data
                    
                    
    @torch.no_grad()
    def val_epoch(self):
        results = []
        results_list = [[] for _ in range(8)]
        
        self.model.eval()
        dataset = self.val_dataloader.dataset
        loader_indices = self.val_dataloader.batch_sampler

        rank, world_size = get_dist_info()
        if self.runner_info.rank == 0:
            prog_bar = mmengine.utils.ProgressBar(len(dataset))

        for idx, (batch_indices, batch_data) in enumerate(zip(loader_indices, self.val_dataloader)):
            self.val_step += 1

            batch_data_collect = self.collect_input(batch_data)
            # result, log_dict = self.model(mode='infer',  **batch_data_collect)
            result, log_dict = self.model(mode='infer', cai_mode='m1', process_num=4, **batch_data_collect) # might use test/val to split cases

            if isinstance(result, list):
                # in case you have multiple results
                for num_res in range(len(result)):
                    metrics = dataset.get_metrics(
                        batch_data_collect['depth_gt'], 
                        result[num_res], 
                        disp_gt_edges=batch_data.get('boundary', None), 
                        additional_mask=log_dict.get('mask', None),
                        image_hr=batch_data.get('image_hr', None))
                    results_list[num_res].extend([metrics])
            
            else:
                metrics = dataset.get_metrics(
                    batch_data_collect['depth_gt'], 
                    result, 
                    seg_image=batch_data_collect.get('seg_image', None),
                    disp_gt_edges=batch_data.get('boundary', None), 
                    additional_mask=log_dict.get('mask', None), 
                    image_hr=batch_data.get('image_hr', None))
                results.extend([metrics])

            if self.runner_info.rank == 0:
                if isinstance(result, list):
                    batch_size = len(result[0]) * world_size
                else:
                    batch_size = len(result) * world_size
                for _ in range(batch_size):
                    prog_bar.update()

            if self.runner_info.rank == 0 and self.config.debug == False and (idx + 1) % self.config.train_cfg.val_log_img_interval == False:
                self.log_images(log_dict=log_dict, prefix="Val", min_depth=self.config.model.min_depth, max_depth=self.config.model.max_depth, step=self.val_step)
            
        # collect results from all ranks
        if isinstance(result, list):
            results_collect = []
            for results in results_list:
                results = collect_results_gpu(results, len(dataset))
                results_collect.append(results)
        else:
            results = collect_results_gpu(results, len(dataset))
            
        if self.runner_info.rank == 0:
            if isinstance(result, list):
                for num_refine in range(len(result)):
                    ret_dict = dataset.evaluate(results_collect[num_refine])
            else:
                ret_dict = dataset.evaluate(results)

        if self.runner_info.rank == 0 and self.config.debug == False:
            wdict = dict()
            for k, v in ret_dict.items():
                wdict["Val/{}".format(k)] = v.item()
            wdict['Val/step'] = self.val_step
            wandb.log(wdict)
        
        torch.cuda.empty_cache()
        if self.runner_info.distributed is True:
            torch.distributed.barrier()
        
        self.model.train() # avoid changing model state 
        
        
    def train_epoch(self, epoch_idx):
        
        self.model.train()
        if self.runner_info.distributed:
            dist.barrier()
        
        pbar = tqdm(enumerate(self.train_dataloader), desc=f"Epoch: {epoch_idx + 1}/{self.config.train_cfg.max_epochs}. Loop: Train",
                    total=self.iters_per_train_epoch) if self.runner_info.rank == 0 else enumerate(self.train_dataloader)
        for idx, batch_data in pbar:
            self.train_step += 1

            batch_data_collect = self.collect_input(batch_data)
            loss_dict, log_dict = self.model(mode='train', **batch_data_collect)
            
            total_loss = loss_dict['total_loss']
            # total_loss = self.grad_scaler.scale(loss_dict['total_loss'])
            
            self.optimizer_wrapper.update_params(total_loss)
            self.scheduler.step()
            
            # log something here
            if self.runner_info.rank == 0:
                log_info = 'Epoch: [{:02d}/{:02d}]'.format(epoch_idx + 1, self.config.train_cfg.max_epochs, idx + 1, len(self.train_dataloader))
                for k, v in loss_dict.items():
                    log_info += ' - {}: {:.2f}'.format(k, v.item())
                pbar.set_description(log_info)
                    
            if (idx + 1) % self.config.train_cfg.log_interval == 0:
                log_info = 'Epoch: [{:02d}/{:02d}] - Step: [{:05d}/{:05d}] - Time: [{}/{}] - Total Loss: {}'.format(epoch_idx + 1, self.config.train_cfg.max_epochs, idx + 1, len(self.train_dataloader), 1, 1, total_loss)
                for k, v in loss_dict.items():
                    if k != 'total_loss':
                        log_info += ' - {}: {}'.format(k, v)
                print_log(log_info, logger='current')
                
                if self.runner_info.rank == 0 and self.config.debug == False:
                    wdict = dict()
                    wdict['Train/total_loss'] = total_loss.item()
                    wdict['Train/LR'] = self.optimizer_wrapper.get_lr()['lr'][0]
                    wdict['Train/momentum'] = self.optimizer_wrapper.get_momentum()['momentum'][0]
                    wdict['Train/step'] = self.train_step
                    for k, v in loss_dict.items():
                        if k != 'total_loss':
                            if isinstance(v, torch.Tensor):
                                wdict['Train/{}'.format(k)] = v.item()
                            else:
                                wdict['Train/{}'.format(k)] = v
                    wandb.log(wdict)
   
            if self.runner_info.rank == 0 and self.config.debug == False and (idx + 1) % self.config.train_cfg.train_log_img_interval == False:
                self.log_images(log_dict=log_dict, prefix="Train", min_depth=self.config.model.min_depth, max_depth=self.config.model.max_depth, step=self.train_step)
            
            if self.config.train_cfg.val_type == 'iter_base':
                if (self.train_step + 1) % self.config.train_cfg.val_interval == 0 and (self.train_step + 1) >= self.config.train_cfg.get('eval_start', 0):
                    self.val_epoch()
                
    def save_checkpoint(self, epoch_idx):
        # As default, the model is wrappered by DDP!!! Hence, even if you're using one gpu, please use dist_train.sh
        if hasattr(self.model.module, 'get_save_dict'):
            print_log('Saving ckp, but use the inner get_save_dict fuction to get model_dict', logger='current')
            # print_log('For saving space. Would you like to save base model several times? :>', logger='current')
            model_dict = self.model.module.get_save_dict()
        else:
            model_dict = self.model.module.state_dict() 
            
        checkpoint_dict = {
            'epoch': epoch_idx, 
            'model_state_dict': model_dict, 
            'optim_state_dict': self.optimizer_wrapper.state_dict(),
            'schedule_state_dict': self.scheduler.state_dict()}
        
        if self.runner_info.rank == 0:
            torch.save(checkpoint_dict, os.path.join(self.runner_info.work_dir, 'checkpoint_{:02d}.pth'.format(epoch_idx + 1)))
        log_info = 'save checkpoint_{:02d}.pth at {}'.format(epoch_idx + 1, self.runner_info.work_dir)
        print_log(log_info, logger='current')
    
    def run(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                print_log('training param: {}'.format(name), logger='current')
        
        # self.val_epoch() # do you want to debug val step?
        for epoch_idx in range(self.config.train_cfg.max_epochs):
            if self.runner_info.distributed:
                self.train_sampler.set_epoch(epoch_idx)
            self.train_epoch(epoch_idx) 
            if (epoch_idx + 1) % self.config.train_cfg.val_interval == 0 and (epoch_idx + 1) >= self.config.train_cfg.get('eval_start', 0) and self.config.train_cfg.val_type == 'epoch_base':
                self.val_epoch()
            if (epoch_idx + 1) % self.config.train_cfg.save_checkpoint_interval == 0:
                self.save_checkpoint(epoch_idx)
            if (epoch_idx + 1) % self.config.train_cfg.get('early_stop_epoch', 9999999) == 0: # Are you using 99999999+ epochs?
                print_log('early stop at epoch: {}'.format(epoch_idx), logger='current')
                break
        
        if self.config.train_cfg.val_type == 'iter_base':
            self.val_epoch()