Spaces:
Runtime error
Runtime error
File size: 15,008 Bytes
1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import wandb
import numpy as np
import torch
import mmengine
from mmengine.optim import build_optim_wrapper
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.distributed as dist
from mmengine.dist import get_dist_info, collect_results_cpu, collect_results_gpu
from mmengine import print_log
import torch.nn.functional as F
from tqdm import tqdm
from estimator.utils import colorize
class Trainer:
"""
Trainer class
"""
def __init__(
self,
config,
runner_info,
train_sampler,
train_dataloader,
val_dataloader,
model):
self.config = config
self.runner_info = runner_info
self.train_sampler = train_sampler
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.model = model
# build opt and schedule
self.optimizer_wrapper = build_optim_wrapper(self.model, config.optim_wrapper)
self.scheduler = optim.lr_scheduler.OneCycleLR(
self.optimizer_wrapper.optimizer, [l['lr'] for l in self.optimizer_wrapper.optimizer.param_groups], epochs=self.config.train_cfg.max_epochs, steps_per_epoch=len(self.train_dataloader),
cycle_momentum=config.param_scheduler.cycle_momentum, base_momentum=config.param_scheduler.get('base_momentum', 0.85), max_momentum=config.param_scheduler.get('max_momentum', 0.95),
div_factor=config.param_scheduler.div_factor, final_div_factor=config.param_scheduler.final_div_factor, pct_start=config.param_scheduler.pct_start, three_phase=config.param_scheduler.three_phase)
# I'd like use wandb log_name
self.train_step = 0 # for training
self.val_step = 0 # for validation
self.iters_per_train_epoch = len(self.train_dataloader)
self.iters_per_val_epoch = len(self.val_dataloader)
self.grad_scaler = torch.cuda.amp.GradScaler()
self.collect_input_args = config.collect_input_args
print_log('successfully init trainer', logger='current')
def log_images(self, log_dict, prefix="", scalar_cmap="turbo_r", min_depth=1e-3, max_depth=80, step=0):
# Custom log images. Please add more items to the log dict returned from the model
wimages = dict()
wimages['{}/step'.format(prefix)] = step
rgb = log_dict.get('rgb')[0]
_, h_rgb, w_rgb = rgb.shape
if 'depth_pred' in log_dict.keys():
depth_pred = log_dict.get('depth_pred')[0]
depth_pred = depth_pred.squeeze()
depth_gt = log_dict.get('depth_gt')[0]
depth_gt = depth_gt.squeeze()
invalid_mask = torch.logical_or(depth_gt<=min_depth, depth_gt>=max_depth).detach().cpu().squeeze().numpy() # (h, w)
if np.sum(np.logical_not(invalid_mask)) == 0: # all pixels in gt are invalid
return
depth_gt_color = colorize(depth_gt, vmin=None, vmax=None, invalid_mask=invalid_mask, cmap=scalar_cmap)
depth_pred_color = colorize(depth_pred, vmin=None, vmax=None)
depth_gt_img = wandb.Image(depth_gt_color, caption='depth_gt')
depth_pred_img = wandb.Image(depth_pred_color, caption='depth_pred')
rgb = wandb.Image(rgb, caption='rgb')
wimages['{}/LogImageDepth'.format(prefix)] = [rgb, depth_gt_img, depth_pred_img]
if 'seg_pred' in log_dict.keys():
seg_pred = log_dict.get('seg_pred')[0]
seg_pred = seg_pred.squeeze()
seg_gt = log_dict.get('seg_gt')[0]
seg_gt = seg_gt.squeeze()
# class_labels = {0: "good", 1: "refine", 2: "oor", 3: "sky"}
class_labels = {0: "bg", 1: "edge"}
mask_img = wandb.Image(
rgb,
masks={
"predictions": {"mask_data": seg_pred.detach().cpu().numpy(), "class_labels": class_labels},
"ground_truth": {"mask_data": seg_gt.detach().cpu().numpy(), "class_labels": class_labels},
},
caption='segmentation')
wimages['{}/LogImageSeg'.format(prefix)] = [mask_img]
if 'mask' in log_dict.keys():
mask = log_dict.get('mask')[0]
mask = mask.squeeze().float()*255
mask_img = wandb.Image(
mask.detach().cpu().numpy(),
caption='segmentation')
cur_log = wimages['{}/LogImageDepth'.format(prefix)]
cur_log.append(mask_img)
wimages['{}/LogImageDepth'.format(prefix)] = cur_log
# some other things
if 'pseudo_gt' in log_dict.keys():
pseudo_gt = log_dict.get('pseudo_gt')[0]
pseudo_gt = pseudo_gt.squeeze()
pseudo_gt_color = colorize(pseudo_gt, vmin=None, vmax=None, cmap=scalar_cmap)
pseudo_gt_img = wandb.Image(pseudo_gt_color, caption='pseudo_gt')
cur_log = wimages['{}/LogImageDepth'.format(prefix)]
cur_log.append(pseudo_gt_img)
# pseudo_gt = log_dict.get('pseudo_gt')[0][0]
# pseudo_gt = pseudo_gt * 255
# pseudo_gt = pseudo_gt.astype(np.uint8)
# pseudo_gt_img = wandb.Image(pseudo_gt, caption='pseudo_gt')
# cur_log = wimages['{}/LogImageDepth'.format(prefix)]
# cur_log.append(pseudo_gt_img)
wandb.log(wimages)
def collect_input(self, batch_data):
collect_batch_data = dict()
for k, v in batch_data.items():
if isinstance(v, torch.Tensor):
if k in self.collect_input_args:
collect_batch_data[k] = v.cuda()
return collect_batch_data
@torch.no_grad()
def val_epoch(self):
results = []
results_list = [[] for _ in range(8)]
self.model.eval()
dataset = self.val_dataloader.dataset
loader_indices = self.val_dataloader.batch_sampler
rank, world_size = get_dist_info()
if self.runner_info.rank == 0:
prog_bar = mmengine.utils.ProgressBar(len(dataset))
for idx, (batch_indices, batch_data) in enumerate(zip(loader_indices, self.val_dataloader)):
self.val_step += 1
batch_data_collect = self.collect_input(batch_data)
# result, log_dict = self.model(mode='infer', **batch_data_collect)
result, log_dict = self.model(mode='infer', cai_mode='m1', process_num=4, **batch_data_collect) # might use test/val to split cases
if isinstance(result, list):
# in case you have multiple results
for num_res in range(len(result)):
metrics = dataset.get_metrics(
batch_data_collect['depth_gt'],
result[num_res],
disp_gt_edges=batch_data.get('boundary', None),
additional_mask=log_dict.get('mask', None),
image_hr=batch_data.get('image_hr', None))
results_list[num_res].extend([metrics])
else:
metrics = dataset.get_metrics(
batch_data_collect['depth_gt'],
result,
seg_image=batch_data_collect.get('seg_image', None),
disp_gt_edges=batch_data.get('boundary', None),
additional_mask=log_dict.get('mask', None),
image_hr=batch_data.get('image_hr', None))
results.extend([metrics])
if self.runner_info.rank == 0:
if isinstance(result, list):
batch_size = len(result[0]) * world_size
else:
batch_size = len(result) * world_size
for _ in range(batch_size):
prog_bar.update()
if self.runner_info.rank == 0 and self.config.debug == False and (idx + 1) % self.config.train_cfg.val_log_img_interval == False:
self.log_images(log_dict=log_dict, prefix="Val", min_depth=self.config.model.min_depth, max_depth=self.config.model.max_depth, step=self.val_step)
# collect results from all ranks
if isinstance(result, list):
results_collect = []
for results in results_list:
results = collect_results_gpu(results, len(dataset))
results_collect.append(results)
else:
results = collect_results_gpu(results, len(dataset))
if self.runner_info.rank == 0:
if isinstance(result, list):
for num_refine in range(len(result)):
ret_dict = dataset.evaluate(results_collect[num_refine])
else:
ret_dict = dataset.evaluate(results)
if self.runner_info.rank == 0 and self.config.debug == False:
wdict = dict()
for k, v in ret_dict.items():
wdict["Val/{}".format(k)] = v.item()
wdict['Val/step'] = self.val_step
wandb.log(wdict)
torch.cuda.empty_cache()
if self.runner_info.distributed is True:
torch.distributed.barrier()
self.model.train() # avoid changing model state
def train_epoch(self, epoch_idx):
self.model.train()
if self.runner_info.distributed:
dist.barrier()
pbar = tqdm(enumerate(self.train_dataloader), desc=f"Epoch: {epoch_idx + 1}/{self.config.train_cfg.max_epochs}. Loop: Train",
total=self.iters_per_train_epoch) if self.runner_info.rank == 0 else enumerate(self.train_dataloader)
for idx, batch_data in pbar:
self.train_step += 1
batch_data_collect = self.collect_input(batch_data)
loss_dict, log_dict = self.model(mode='train', **batch_data_collect)
total_loss = loss_dict['total_loss']
# total_loss = self.grad_scaler.scale(loss_dict['total_loss'])
self.optimizer_wrapper.update_params(total_loss)
self.scheduler.step()
# log something here
if self.runner_info.rank == 0:
log_info = 'Epoch: [{:02d}/{:02d}]'.format(epoch_idx + 1, self.config.train_cfg.max_epochs, idx + 1, len(self.train_dataloader))
for k, v in loss_dict.items():
log_info += ' - {}: {:.2f}'.format(k, v.item())
pbar.set_description(log_info)
if (idx + 1) % self.config.train_cfg.log_interval == 0:
log_info = 'Epoch: [{:02d}/{:02d}] - Step: [{:05d}/{:05d}] - Time: [{}/{}] - Total Loss: {}'.format(epoch_idx + 1, self.config.train_cfg.max_epochs, idx + 1, len(self.train_dataloader), 1, 1, total_loss)
for k, v in loss_dict.items():
if k != 'total_loss':
log_info += ' - {}: {}'.format(k, v)
print_log(log_info, logger='current')
if self.runner_info.rank == 0 and self.config.debug == False:
wdict = dict()
wdict['Train/total_loss'] = total_loss.item()
wdict['Train/LR'] = self.optimizer_wrapper.get_lr()['lr'][0]
wdict['Train/momentum'] = self.optimizer_wrapper.get_momentum()['momentum'][0]
wdict['Train/step'] = self.train_step
for k, v in loss_dict.items():
if k != 'total_loss':
if isinstance(v, torch.Tensor):
wdict['Train/{}'.format(k)] = v.item()
else:
wdict['Train/{}'.format(k)] = v
wandb.log(wdict)
if self.runner_info.rank == 0 and self.config.debug == False and (idx + 1) % self.config.train_cfg.train_log_img_interval == False:
self.log_images(log_dict=log_dict, prefix="Train", min_depth=self.config.model.min_depth, max_depth=self.config.model.max_depth, step=self.train_step)
if self.config.train_cfg.val_type == 'iter_base':
if (self.train_step + 1) % self.config.train_cfg.val_interval == 0 and (self.train_step + 1) >= self.config.train_cfg.get('eval_start', 0):
self.val_epoch()
def save_checkpoint(self, epoch_idx):
# As default, the model is wrappered by DDP!!! Hence, even if you're using one gpu, please use dist_train.sh
if hasattr(self.model.module, 'get_save_dict'):
print_log('Saving ckp, but use the inner get_save_dict fuction to get model_dict', logger='current')
# print_log('For saving space. Would you like to save base model several times? :>', logger='current')
model_dict = self.model.module.get_save_dict()
else:
model_dict = self.model.module.state_dict()
checkpoint_dict = {
'epoch': epoch_idx,
'model_state_dict': model_dict,
'optim_state_dict': self.optimizer_wrapper.state_dict(),
'schedule_state_dict': self.scheduler.state_dict()}
if self.runner_info.rank == 0:
torch.save(checkpoint_dict, os.path.join(self.runner_info.work_dir, 'checkpoint_{:02d}.pth'.format(epoch_idx + 1)))
log_info = 'save checkpoint_{:02d}.pth at {}'.format(epoch_idx + 1, self.runner_info.work_dir)
print_log(log_info, logger='current')
def run(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
print_log('training param: {}'.format(name), logger='current')
# self.val_epoch() # do you want to debug val step?
for epoch_idx in range(self.config.train_cfg.max_epochs):
if self.runner_info.distributed:
self.train_sampler.set_epoch(epoch_idx)
self.train_epoch(epoch_idx)
if (epoch_idx + 1) % self.config.train_cfg.val_interval == 0 and (epoch_idx + 1) >= self.config.train_cfg.get('eval_start', 0) and self.config.train_cfg.val_type == 'epoch_base':
self.val_epoch()
if (epoch_idx + 1) % self.config.train_cfg.save_checkpoint_interval == 0:
self.save_checkpoint(epoch_idx)
if (epoch_idx + 1) % self.config.train_cfg.get('early_stop_epoch', 9999999) == 0: # Are you using 99999999+ epochs?
print_log('early stop at epoch: {}'.format(epoch_idx), logger='current')
break
if self.config.train_cfg.val_type == 'iter_base':
self.val_epoch()
|