Spaces:
Runtime error
Runtime error
File size: 8,806 Bytes
1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import os.path as osp
import argparse
import torch
import time
from torch.utils.data import DataLoader
from mmengine.utils import mkdir_or_exist
from mmengine.config import Config, DictAction
from mmengine.logging import MMLogger
from estimator.utils import RunnerInfo, setup_env, log_env, fix_random_seed
from estimator.models.builder import build_model
from estimator.datasets.builder import build_dataset
from estimator.tester import Tester
from estimator.models.patchfusion import PatchFusion
from mmengine import print_log
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--work-dir',
help='the dir to save logs and models',
default=None)
parser.add_argument(
'--test-type',
type=str,
default='normal',
help='evaluation type')
parser.add_argument(
'--ckp-path',
type=str,
help='ckp_path')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--save',
action='store_true',
default=False,
help='save colored prediction & depth predictions')
parser.add_argument(
'--cai-mode',
type=str,
default='m1',
help='m1, m2, or rx')
parser.add_argument(
'--process-num',
type=int, default=4,
help='batchsize number for inference')
parser.add_argument(
'--tag',
type=str, default='',
help='infer_infos')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use ckp path as default work_dir if cfg.work_dir is None
if '.pth' in args.ckp_path:
args.work_dir = osp.dirname(args.ckp_path)
else:
args.work_dir = osp.join('work_dir', args.ckp_path.split('/')[1])
cfg.work_dir = args.work_dir
mkdir_or_exist(cfg.work_dir)
cfg.ckp_path = args.ckp_path
# fix seed
seed = cfg.get('seed', 5621)
fix_random_seed(seed)
# start dist training
if cfg.launcher == 'none':
distributed = False
timestamp = torch.tensor(time.time(), dtype=torch.float64)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(timestamp.item()))
rank = 0
world_size = 1
env_cfg = cfg.get('env_cfg')
else:
distributed = True
env_cfg = cfg.get('env_cfg', dict(dist_cfg=dict(backend='nccl')))
rank, world_size, timestamp = setup_env(env_cfg, distributed, cfg.launcher)
# build dataloader
if args.test_type == 'consistency':
dataset = build_dataset(cfg.val_consistency_dataloader.dataset)
elif args.test_type == 'normal':
dataset = build_dataset(cfg.val_dataloader.dataset)
elif args.test_type == 'test_in':
dataset = build_dataset(cfg.test_in_dataloader.dataset)
elif args.test_type == 'test_out':
dataset = build_dataset(cfg.test_out_dataloader.dataset)
elif args.test_type == 'general':
dataset = build_dataset(cfg.general_dataloader.dataset)
else:
dataset = build_dataset(cfg.val_dataloader.dataset)
# extract experiment name from cmd
config_path = args.config
exp_cfg_filename = config_path.split('/')[-1].split('.')[0]
ckp_name = args.ckp_path.replace('/', '_').replace('.pth', '')
dataset_name = dataset.dataset_name
# log_filename = 'eval_{}_{}_{}_{}.log'.format(timestamp, exp_cfg_filename, ckp_name, dataset_name)
log_filename = 'eval_{}_{}_{}_{}_{}.log'.format(exp_cfg_filename, args.tag, ckp_name, dataset_name, timestamp)
# prepare basic text logger
log_file = osp.join(args.work_dir, log_filename)
log_cfg = dict(log_level='INFO', log_file=log_file)
log_cfg.setdefault('name', timestamp)
log_cfg.setdefault('logger_name', 'patchstitcher')
# `torch.compile` in PyTorch 2.0 could close all user defined handlers
# unexpectedly. Using file mode 'a' can help prevent abnormal
# termination of the FileHandler and ensure that the log file could
# be continuously updated during the lifespan of the runner.
log_cfg.setdefault('file_mode', 'a')
logger = MMLogger.get_instance(**log_cfg)
# save some information useful during the training
runner_info = RunnerInfo()
runner_info.config = cfg # ideally, cfg should not be changed during process. information should be temp saved in runner_info
runner_info.logger = logger # easier way: use print_log("infos", logger='current')
runner_info.rank = rank
runner_info.distributed = distributed
runner_info.launcher = cfg.launcher
runner_info.seed = seed
runner_info.world_size = world_size
runner_info.work_dir = cfg.work_dir
runner_info.timestamp = timestamp
runner_info.save = args.save
runner_info.log_filename = log_filename
if runner_info.save:
mkdir_or_exist(args.work_dir)
runner_info.work_dir = args.work_dir
# log_env(cfg, env_cfg, runner_info, logger)
# build model
if '.pth' in cfg.ckp_path:
model = build_model(cfg.model)
print_log('Checkpoint Path: {}. Loading from a local file'.format(cfg.ckp_path), logger='current')
if hasattr(model, 'load_dict'):
print_log(model.load_dict(torch.load(cfg.ckp_path)['model_state_dict']), logger='current')
else:
print_log(model.load_state_dict(torch.load(cfg.ckp_path)['model_state_dict'], strict=True), logger='current')
else:
print_log('Checkpoint Path: {}. Loading from the huggingface repo'.format(cfg.ckp_path), logger='current')
assert cfg.ckp_path in \
['Zhyever/patchfusion_depth_anything_vits14',
'Zhyever/patchfusion_depth_anything_vitb14',
'Zhyever/patchfusion_depth_anything_vitl14',
'Zhyever/patchfusion_zoedepth'], 'Invalid model name'
model = PatchFusion.from_pretrained(cfg.ckp_path)
model.eval()
if runner_info.distributed:
torch.cuda.set_device(runner_info.rank)
model.cuda(runner_info.rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[runner_info.rank], output_device=runner_info.rank,
find_unused_parameters=cfg.get('find_unused_parameters', False))
logger.info(model)
else:
model.cuda()
if runner_info.distributed:
val_sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)
else:
val_sampler = None
val_dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.val_dataloader.num_workers,
pin_memory=True,
persistent_workers=True,
sampler=val_sampler)
# build tester
tester = Tester(
config=cfg,
runner_info=runner_info,
dataloader=val_dataloader,
model=model)
if args.test_type == 'consistency':
tester.run_consistency()
else:
tester.run(args.cai_mode, process_num=args.process_num)
if __name__ == '__main__':
main() |