Spaces:
Runtime error
Runtime error
File size: 11,041 Bytes
78ab311 1f418ff 78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
import numpy as np
KEY_OUTPUT = 'metric_depth'
def extract_key(prediction, key):
if isinstance(prediction, dict):
return prediction[key]
return prediction
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15):
super(SILogLoss, self).__init__()
self.name = 'SILog'
self.beta = beta
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
if target.ndim == 3:
target = target.unsqueeze(1)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
input = input[mask]
target = target[mask]
with amp.autocast(enabled=False): # amp causes NaNs in this loss function
alpha = 1e-7
g = torch.log(input + alpha) - torch.log(target + alpha)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
if torch.isnan(loss):
print("Nan SILog loss")
print("input:", input.shape)
print("target:", target.shape)
print("G", torch.sum(torch.isnan(g)))
print("Input min max", torch.min(input), torch.max(input))
print("Target min max", torch.min(target), torch.max(target))
print("Dg", torch.isnan(Dg))
print("loss", torch.isnan(loss))
if not return_interpolated:
return loss
return loss, intr_input
def grad(x):
# x.shape : n, c, h, w
diff_x = x[..., 1:, 1:] - x[..., 1:, :-1]
diff_y = x[..., 1:, 1:] - x[..., :-1, 1:]
mag = diff_x**2 + diff_y**2
# angle_ratio
angle = torch.atan(diff_y / (diff_x + 1e-10))
return mag, angle
def grad_mask(mask):
return mask[..., 1:, 1:] & mask[..., 1:, :-1] & mask[..., :-1, 1:]
class GradL1Loss(nn.Module):
"""Gradient loss"""
def __init__(self):
super(GradL1Loss, self).__init__()
self.name = 'GradL1'
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
grad_gt = grad(target)
grad_pred = grad(input)
mask_g = grad_mask(mask)
loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g])
loss = loss + \
nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g])
if not return_interpolated:
return loss
return loss, intr_input
class OrdinalRegressionLoss(object):
def __init__(self, ord_num, beta, discretization="SID"):
self.ord_num = ord_num
self.beta = beta
self.discretization = discretization
def _create_ord_label(self, gt):
N,one, H, W = gt.shape
# print("gt shape:", gt.shape)
ord_c0 = torch.ones(N, self.ord_num, H, W).to(gt.device)
if self.discretization == "SID":
label = self.ord_num * torch.log(gt) / np.log(self.beta)
else:
label = self.ord_num * (gt - 1.0) / (self.beta - 1.0)
label = label.long()
mask = torch.linspace(0, self.ord_num - 1, self.ord_num, requires_grad=False) \
.view(1, self.ord_num, 1, 1).to(gt.device)
mask = mask.repeat(N, 1, H, W).contiguous().long()
mask = (mask > label)
ord_c0[mask] = 0
ord_c1 = 1 - ord_c0
# implementation according to the paper.
# ord_label = torch.ones(N, self.ord_num * 2, H, W).to(gt.device)
# ord_label[:, 0::2, :, :] = ord_c0
# ord_label[:, 1::2, :, :] = ord_c1
# reimplementation for fast speed.
ord_label = torch.cat((ord_c0, ord_c1), dim=1)
return ord_label, mask
def __call__(self, prob, gt):
"""
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor
:param gt: depth ground truth, NXHxW, torch.Tensor
:return: loss: loss value, torch.float
"""
# N, C, H, W = prob.shape
valid_mask = gt > 0.
ord_label, mask = self._create_ord_label(gt)
# print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape))
entropy = -prob * ord_label
loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)]
return loss.mean()
class DiscreteNLLLoss(nn.Module):
"""Cross entropy loss"""
def __init__(self, min_depth=1e-3, max_depth=10, depth_bins=64):
super(DiscreteNLLLoss, self).__init__()
self.name = 'CrossEntropy'
self.ignore_index = -(depth_bins + 1)
# self._loss_func = nn.NLLLoss(ignore_index=self.ignore_index)
self._loss_func = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
self.min_depth = min_depth
self.max_depth = max_depth
self.depth_bins = depth_bins
self.alpha = 1
self.zeta = 1 - min_depth
self.beta = max_depth + self.zeta
def quantize_depth(self, depth):
# depth : N1HW
# output : NCHW
# Quantize depth log-uniformly on [1, self.beta] into self.depth_bins bins
depth = torch.log(depth / self.alpha) / np.log(self.beta / self.alpha)
depth = depth * (self.depth_bins - 1)
depth = torch.round(depth)
depth = depth.long()
return depth
def _dequantize_depth(self, depth):
"""
Inverse of quantization
depth : NCHW -> N1HW
"""
# Get the center of the bin
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
# assert torch.all(input <= 0), "Input should be negative"
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
# assert torch.all(input)<=1)
if target.ndim == 3:
target = target.unsqueeze(1)
target = self.quantize_depth(target)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
# Set the mask to ignore_index
mask = mask.long()
input = input * mask + (1 - mask) * self.ignore_index
target = target * mask + (1 - mask) * self.ignore_index
input = input.flatten(2) # N, nbins, H*W
target = target.flatten(1) # N, H*W
loss = self._loss_func(input, target)
if not return_interpolated:
return loss
return loss, intr_input
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
# A needs to be a positive definite matrix.
valid = det > 0
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return x_0, x_1
class ScaleAndShiftInvariantLoss(nn.Module):
def __init__(self):
super().__init__()
self.name = "SSILoss"
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False):
if prediction.shape[-1] != target.shape[-1] and interpolate:
prediction = nn.functional.interpolate(prediction, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = prediction
else:
intr_input = prediction
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze()
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}."
scale, shift = compute_scale_and_shift(prediction, target, mask)
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask])
if not return_interpolated:
return loss
return loss, intr_input
if __name__ == '__main__':
# Tests for DiscreteNLLLoss
celoss = DiscreteNLLLoss()
print(celoss(torch.rand(4, 64, 26, 32)*10, torch.rand(4, 1, 26, 32)*10, ))
d = torch.Tensor([6.59, 3.8, 10.0])
print(celoss.dequantize_depth(celoss.quantize_depth(d)))
|