Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torchvision.transforms import Normalize | |
# from zoedepth.models.base_models.dpt_dinov2.dpt import DPT_DINOv2 | |
from depth_anything.dpt import DPT_DINOv2 | |
def denormalize(x): | |
"""Reverses the imagenet normalization applied to the input. | |
Args: | |
x (torch.Tensor - shape(N,3,H,W)): input tensor | |
Returns: | |
torch.Tensor - shape(N,3,H,W): Denormalized input | |
""" | |
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) | |
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) | |
return x * std + mean | |
def get_activation(name, bank): | |
def hook(model, input, output): | |
bank[name] = output | |
return hook | |
class Resize(object): | |
"""Resize sample to given size (width, height). | |
""" | |
def __init__( | |
self, | |
width, | |
height, | |
resize_target=True, | |
keep_aspect_ratio=False, | |
ensure_multiple_of=1, | |
resize_method="lower_bound", | |
): | |
"""Init. | |
Args: | |
width (int): desired output width | |
height (int): desired output height | |
resize_target (bool, optional): | |
True: Resize the full sample (image, mask, target). | |
False: Resize image only. | |
Defaults to True. | |
keep_aspect_ratio (bool, optional): | |
True: Keep the aspect ratio of the input sample. | |
Output sample might not have the given width and height, and | |
resize behaviour depends on the parameter 'resize_method'. | |
Defaults to False. | |
ensure_multiple_of (int, optional): | |
Output width and height is constrained to be multiple of this parameter. | |
Defaults to 1. | |
resize_method (str, optional): | |
"lower_bound": Output will be at least as large as the given size. | |
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) | |
"minimal": Scale as least as possible. (Output size might be smaller than given size.) | |
Defaults to "lower_bound". | |
""" | |
# print("Params passed to Resize transform:") | |
# print("\twidth: ", width) | |
# print("\theight: ", height) | |
# print("\tresize_target: ", resize_target) | |
# print("\tkeep_aspect_ratio: ", keep_aspect_ratio) | |
# print("\tensure_multiple_of: ", ensure_multiple_of) | |
# print("\tresize_method: ", resize_method) | |
self.__width = width | |
self.__height = height | |
self.__keep_aspect_ratio = keep_aspect_ratio | |
self.__multiple_of = ensure_multiple_of | |
self.__resize_method = resize_method | |
def constrain_to_multiple_of(self, x, min_val=0, max_val=None): | |
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) | |
if max_val is not None and y > max_val: | |
y = (np.floor(x / self.__multiple_of) | |
* self.__multiple_of).astype(int) | |
if y < min_val: | |
y = (np.ceil(x / self.__multiple_of) | |
* self.__multiple_of).astype(int) | |
return y | |
def get_size(self, width, height): | |
# determine new height and width | |
scale_height = self.__height / height | |
scale_width = self.__width / width | |
if self.__keep_aspect_ratio: | |
if self.__resize_method == "lower_bound": | |
# scale such that output size is lower bound | |
if scale_width > scale_height: | |
# fit width | |
scale_height = scale_width | |
else: | |
# fit height | |
scale_width = scale_height | |
elif self.__resize_method == "upper_bound": | |
# scale such that output size is upper bound | |
if scale_width < scale_height: | |
# fit width | |
scale_height = scale_width | |
else: | |
# fit height | |
scale_width = scale_height | |
elif self.__resize_method == "minimal": | |
# scale as least as possbile | |
if abs(1 - scale_width) < abs(1 - scale_height): | |
# fit width | |
scale_height = scale_width | |
else: | |
# fit height | |
scale_width = scale_height | |
else: | |
raise ValueError( | |
f"resize_method {self.__resize_method} not implemented" | |
) | |
if self.__resize_method == "lower_bound": | |
new_height = self.constrain_to_multiple_of( | |
scale_height * height, min_val=self.__height | |
) | |
new_width = self.constrain_to_multiple_of( | |
scale_width * width, min_val=self.__width | |
) | |
elif self.__resize_method == "upper_bound": | |
new_height = self.constrain_to_multiple_of( | |
scale_height * height, max_val=self.__height | |
) | |
new_width = self.constrain_to_multiple_of( | |
scale_width * width, max_val=self.__width | |
) | |
elif self.__resize_method == "minimal": | |
new_height = self.constrain_to_multiple_of(scale_height * height) | |
new_width = self.constrain_to_multiple_of(scale_width * width) | |
else: | |
raise ValueError( | |
f"resize_method {self.__resize_method} not implemented") | |
return (new_width, new_height) | |
def __call__(self, x): | |
width, height = self.get_size(*x.shape[-2:][::-1]) | |
return nn.functional.interpolate(x, (int(height), int(width)), mode='bilinear', align_corners=True) | |
class PrepForMidas(object): | |
def __init__(self, resize_mode="minimal", keep_aspect_ratio=True, img_size=384, do_resize=True): | |
if isinstance(img_size, int): | |
img_size = (img_size, img_size) | |
net_h, net_w = img_size | |
# self.normalization = Normalize( | |
# mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
self.normalization = Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
self.resizer = Resize(net_w, net_h, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=14, resize_method=resize_mode) \ | |
if do_resize else nn.Identity() | |
def __call__(self, x): | |
return self.normalization(self.resizer(x)) | |
class DepthAnythingCore(nn.Module): | |
def __init__(self, midas, trainable=False, fetch_features=True, layer_names=('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'), freeze_bn=False, keep_aspect_ratio=True, img_size=384, core_type='vits', **kwargs): | |
"""Midas Base model used for multi-scale feature extraction. | |
Args: | |
midas (torch.nn.Module): Midas model. | |
trainable (bool, optional): Train midas model. Defaults to False. | |
fetch_features (bool, optional): Extract multi-scale features. Defaults to True. | |
layer_names (tuple, optional): Layers used for feature extraction. Order = (head output features, last layer features, ...decoder features). Defaults to ('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'). | |
freeze_bn (bool, optional): Freeze BatchNorm. Generally results in better finetuning performance. Defaults to False. | |
keep_aspect_ratio (bool, optional): Keep the aspect ratio of input images while resizing. Defaults to True. | |
img_size (int, tuple, optional): Input resolution. Defaults to 384. | |
""" | |
super().__init__() | |
self.core_type = core_type | |
self.core = midas | |
self.output_channels = None | |
self.core_out = {} | |
self.trainable = trainable | |
self.fetch_features = fetch_features | |
# midas.scratch.output_conv = nn.Identity() | |
self.handles = [] | |
# self.layer_names = ['out_conv','l4_rn', 'r4', 'r3', 'r2', 'r1'] | |
self.layer_names = layer_names | |
self.set_trainable(trainable) | |
self.set_fetch_features(fetch_features) | |
self.prep = PrepForMidas(keep_aspect_ratio=keep_aspect_ratio, | |
img_size=img_size, do_resize=kwargs.get('do_resize', True)) | |
if freeze_bn: | |
self.freeze_bn() | |
def set_trainable(self, trainable): | |
self.trainable = trainable | |
if trainable: | |
self.unfreeze() | |
else: | |
self.freeze() | |
return self | |
def set_fetch_features(self, fetch_features): | |
self.fetch_features = fetch_features | |
if fetch_features: | |
if len(self.handles) == 0: | |
self.attach_hooks(self.core) | |
else: | |
self.remove_hooks() | |
return self | |
def freeze(self): | |
for p in self.parameters(): | |
p.requires_grad = False | |
self.trainable = False | |
return self | |
def unfreeze(self): | |
for p in self.parameters(): | |
p.requires_grad = True | |
self.trainable = True | |
return self | |
def freeze_bn(self): | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
return self | |
def forward(self, x, denorm=False, return_rel_depth=False): | |
# print('input to midas:', x.shape) | |
with torch.no_grad(): | |
if denorm: | |
x = denormalize(x) | |
x = self.prep(x) | |
with torch.set_grad_enabled(self.trainable): | |
rel_depth = self.core(x) | |
if not self.fetch_features: | |
return rel_depth | |
out = [self.core_out[k] for k in self.layer_names] | |
if return_rel_depth: | |
return rel_depth, out | |
return out | |
def get_rel_pos_params(self): | |
for name, p in self.core.pretrained.named_parameters(): | |
if "pos_embed" in name: | |
yield p | |
def get_enc_params_except_rel_pos(self): | |
for name, p in self.core.pretrained.named_parameters(): | |
if "pos_embed" not in name: | |
yield p | |
def freeze_encoder(self, freeze_rel_pos=False): | |
if freeze_rel_pos: | |
for p in self.core.pretrained.parameters(): | |
p.requires_grad = False | |
else: | |
for p in self.get_enc_params_except_rel_pos(): | |
p.requires_grad = False | |
return self | |
def attach_hooks(self, midas): | |
if len(self.handles) > 0: | |
self.remove_hooks() | |
if "out_conv" in self.layer_names: | |
self.handles.append(list(midas.depth_head.scratch.output_conv2.children())[ | |
1].register_forward_hook(get_activation("out_conv", self.core_out))) | |
if "r4" in self.layer_names: | |
self.handles.append(midas.depth_head.scratch.refinenet4.register_forward_hook( | |
get_activation("r4", self.core_out))) | |
if "r3" in self.layer_names: | |
self.handles.append(midas.depth_head.scratch.refinenet3.register_forward_hook( | |
get_activation("r3", self.core_out))) | |
if "r2" in self.layer_names: | |
self.handles.append(midas.depth_head.scratch.refinenet2.register_forward_hook( | |
get_activation("r2", self.core_out))) | |
if "r1" in self.layer_names: | |
self.handles.append(midas.depth_head.scratch.refinenet1.register_forward_hook( | |
get_activation("r1", self.core_out))) | |
if "l4_rn" in self.layer_names: | |
self.handles.append(midas.depth_head.scratch.layer4_rn.register_forward_hook( | |
get_activation("l4_rn", self.core_out))) | |
return self | |
def remove_hooks(self): | |
for h in self.handles: | |
h.remove() | |
return self | |
def __del__(self): | |
self.remove_hooks() | |
def set_output_channels(self): | |
if self.core_type == 'vits': | |
self.output_channels = [64, 64, 64, 64, 64] | |
elif self.core_type == 'vitb': | |
self.output_channels = [128, 128, 128, 128, 128] | |
elif self.core_type == 'vitl': | |
self.output_channels = [256, 256, 256, 256, 256] | |
def build(midas_model_type="dinov2_large", train_midas=False, use_pretrained_midas=True, fetch_features=False, freeze_bn=True, force_keep_ar=False, force_reload=False, **kwargs): | |
if "img_size" in kwargs: | |
kwargs = DepthAnythingCore.parse_img_size(kwargs) | |
img_size = kwargs.pop("img_size", [384, 384]) | |
if midas_model_type == 'vits': | |
depth_anything = DPT_DINOv2(encoder=midas_model_type, features=64, out_channels=[48, 96, 192, 384], use_clstoken=False) | |
state_dict = torch.load('/ibex/ai/home/liz0l/codes/ZoeDepth/depth_anything_vits14.pth', map_location='cpu') | |
elif midas_model_type == 'vitb': | |
depth_anything = DPT_DINOv2(encoder=midas_model_type, features=128, out_channels=[96, 192, 384, 768], use_clstoken=False) | |
state_dict = torch.load('/ibex/ai/home/liz0l/codes/ZoeDepth/depth_anything_vitb14.pth', map_location='cpu') | |
elif midas_model_type == 'vitl': | |
depth_anything = DPT_DINOv2(encoder=midas_model_type, features=256, out_channels=[256, 512, 1024, 1024], use_clstoken=False) | |
state_dict = torch.load('/ibex/ai/home/liz0l/codes/ZoeDepth/depth_anything_vitl14.pth', map_location='cpu') | |
else: | |
raise NotImplementedError | |
depth_anything.load_state_dict(state_dict) | |
kwargs.update({'keep_aspect_ratio': force_keep_ar}) | |
depth_anything_core = DepthAnythingCore(depth_anything, trainable=train_midas, fetch_features=fetch_features, | |
freeze_bn=freeze_bn, img_size=img_size, core_type=midas_model_type, **kwargs) | |
depth_anything_core.set_output_channels() | |
return depth_anything_core | |
def parse_img_size(config): | |
assert 'img_size' in config | |
if isinstance(config['img_size'], str): | |
assert "," in config['img_size'], "img_size should be a string with comma separated img_size=H,W" | |
config['img_size'] = list(map(int, config['img_size'].split(","))) | |
assert len( | |
config['img_size']) == 2, "img_size should be a string with comma separated img_size=H,W" | |
elif isinstance(config['img_size'], int): | |
config['img_size'] = [config['img_size'], config['img_size']] | |
else: | |
assert isinstance(config['img_size'], list) and len( | |
config['img_size']) == 2, "img_size should be a list of H,W" | |
return config | |
nchannels2models = { | |
tuple([256]*5): ["DPT_BEiT_L_384", "DPT_BEiT_L_512", "DPT_BEiT_B_384", "DPT_SwinV2_L_384", "DPT_SwinV2_B_384", "DPT_SwinV2_T_256", "DPT_Large", "DPT_Hybrid"], | |
(512, 256, 128, 64, 64): ["MiDaS_small"] | |
} | |
# Model name to number of output channels | |
MIDAS_SETTINGS = {m: k for k, v in nchannels2models.items() | |
for m in v | |
} |