File size: 7,950 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
from collections.abc import Generator

import pytest

from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessageTool,
    SystemPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock


def test_predefined_models():
    model = ChatGLMLargeLanguageModel()
    model_schemas = model.predefined_models()
    assert len(model_schemas) >= 1
    assert isinstance(model_schemas[0], AIModelEntity)


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock):
    model = ChatGLMLargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"})

    model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")})


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_model(setup_openai_mock):
    model = ChatGLMLargeLanguageModel()

    response = model.invoke(
        model="chatglm2-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        user="abc-123",
        stream=False,
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0
    assert response.usage.total_tokens > 0


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_stream_model(setup_openai_mock):
    model = ChatGLMLargeLanguageModel()

    response = model.invoke(
        model="chatglm2-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        stream=True,
        user="abc-123",
    )

    assert isinstance(response, Generator)
    for chunk in response:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_stream_model_with_functions(setup_openai_mock):
    model = ChatGLMLargeLanguageModel()

    response = model.invoke(
        model="chatglm3-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。"
            ),
            UserPromptMessage(content="波士顿天气如何?"),
        ],
        model_parameters={
            "temperature": 0,
            "top_p": 1.0,
        },
        stop=["you"],
        user="abc-123",
        stream=True,
        tools=[
            PromptMessageTool(
                name="get_current_weather",
                description="Get the current weather in a given location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            )
        ],
    )

    assert isinstance(response, Generator)

    call: LLMResultChunk = None
    chunks = []

    for chunk in response:
        chunks.append(chunk)
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True

        if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
            call = chunk
            break

    assert call is not None
    assert call.delta.message.tool_calls[0].function.name == "get_current_weather"


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_model_with_functions(setup_openai_mock):
    model = ChatGLMLargeLanguageModel()

    response = model.invoke(
        model="chatglm3-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        user="abc-123",
        stream=False,
        tools=[
            PromptMessageTool(
                name="get_current_weather",
                description="Get the current weather in a given location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            )
        ],
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0
    assert response.usage.total_tokens > 0
    assert response.message.tool_calls[0].function.name == "get_current_weather"


def test_get_num_tokens():
    model = ChatGLMLargeLanguageModel()

    num_tokens = model.get_num_tokens(
        model="chatglm2-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        tools=[
            PromptMessageTool(
                name="get_current_weather",
                description="Get the current weather in a given location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            )
        ],
    )

    assert isinstance(num_tokens, int)
    assert num_tokens == 77

    num_tokens = model.get_num_tokens(
        model="chatglm2-6b",
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
    )

    assert isinstance(num_tokens, int)
    assert num_tokens == 21