|
import os |
|
from collections.abc import Generator |
|
|
|
import pytest |
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta |
|
from core.model_runtime.entities.message_entities import ( |
|
AssistantPromptMessage, |
|
PromptMessageTool, |
|
SystemPromptMessage, |
|
UserPromptMessage, |
|
) |
|
from core.model_runtime.entities.model_entities import AIModelEntity |
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError |
|
from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel |
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE""" |
|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock |
|
|
|
|
|
def test_predefined_models(): |
|
model = XAILargeLanguageModel() |
|
model_schemas = model.predefined_models() |
|
|
|
assert len(model_schemas) >= 1 |
|
assert isinstance(model_schemas[0], AIModelEntity) |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_validate_credentials_for_chat_model(setup_openai_mock): |
|
model = XAILargeLanguageModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
|
|
model.validate_credentials( |
|
model="gpt-3.5-turbo", |
|
credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"}, |
|
) |
|
|
|
model.validate_credentials( |
|
model="grok-beta", |
|
credentials={ |
|
"api_key": os.environ.get("XAI_API_KEY"), |
|
"endpoint_url": os.environ.get("XAI_API_BASE"), |
|
"mode": "chat", |
|
}, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_chat_model(setup_openai_mock): |
|
model = XAILargeLanguageModel() |
|
|
|
result = model.invoke( |
|
model="grok-beta", |
|
credentials={ |
|
"api_key": os.environ.get("XAI_API_KEY"), |
|
"endpoint_url": os.environ.get("XAI_API_BASE"), |
|
"mode": "chat", |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={ |
|
"temperature": 0.0, |
|
"top_p": 1.0, |
|
"presence_penalty": 0.0, |
|
"frequency_penalty": 0.0, |
|
"max_tokens": 10, |
|
}, |
|
stop=["How"], |
|
stream=False, |
|
user="foo", |
|
) |
|
|
|
assert isinstance(result, LLMResult) |
|
assert len(result.message.content) > 0 |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_chat_model_with_tools(setup_openai_mock): |
|
model = XAILargeLanguageModel() |
|
|
|
result = model.invoke( |
|
model="grok-beta", |
|
credentials={ |
|
"api_key": os.environ.get("XAI_API_KEY"), |
|
"endpoint_url": os.environ.get("XAI_API_BASE"), |
|
"mode": "chat", |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage( |
|
content="what's the weather today in London?", |
|
), |
|
], |
|
model_parameters={"temperature": 0.0, "max_tokens": 100}, |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_weather", |
|
description="Determine weather in my location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["c", "f"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
), |
|
PromptMessageTool( |
|
name="get_stock_price", |
|
description="Get the current stock price", |
|
parameters={ |
|
"type": "object", |
|
"properties": {"symbol": {"type": "string", "description": "The stock symbol"}}, |
|
"required": ["symbol"], |
|
}, |
|
), |
|
], |
|
stream=False, |
|
user="foo", |
|
) |
|
|
|
assert isinstance(result, LLMResult) |
|
assert isinstance(result.message, AssistantPromptMessage) |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_stream_chat_model(setup_openai_mock): |
|
model = XAILargeLanguageModel() |
|
|
|
result = model.invoke( |
|
model="grok-beta", |
|
credentials={ |
|
"api_key": os.environ.get("XAI_API_KEY"), |
|
"endpoint_url": os.environ.get("XAI_API_BASE"), |
|
"mode": "chat", |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={"temperature": 0.0, "max_tokens": 100}, |
|
stream=True, |
|
user="foo", |
|
) |
|
|
|
assert isinstance(result, Generator) |
|
|
|
for chunk in result: |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
if chunk.delta.finish_reason is not None: |
|
assert chunk.delta.usage is not None |
|
assert chunk.delta.usage.completion_tokens > 0 |
|
|
|
|
|
def test_get_num_tokens(): |
|
model = XAILargeLanguageModel() |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="grok-beta", |
|
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, |
|
prompt_messages=[UserPromptMessage(content="Hello World!")], |
|
) |
|
|
|
assert num_tokens == 10 |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="grok-beta", |
|
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_weather", |
|
description="Determine weather in my location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["c", "f"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
), |
|
], |
|
) |
|
|
|
assert num_tokens == 77 |
|
|