File size: 10,115 Bytes
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815b624
 
 
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f50b2
 
 
d47d9de
27f50b2
 
 
 
 
 
 
 
d47d9de
27f50b2
 
 
a4f846b
27f50b2
 
 
 
 
 
0b6e063
 
 
 
 
 
 
 
 
 
 
 
 
b19bf5d
 
27f50b2
 
 
 
 
 
 
 
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f50b2
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import gradio as gr
import open_clip
import torch
import taming.models.vqgan
import ml_collections
import einops
import random
import pathlib
import subprocess
import shlex
import wget
# Model
from libs.muse import MUSE
import utils
import numpy as np
from PIL import Image
def d(**kwargs):
    """Helper of creating a config dict."""
    return ml_collections.ConfigDict(initial_dictionary=kwargs)

def get_config():
    config = ml_collections.ConfigDict()
    config.seed = 1234
    config.z_shape = (8, 16, 16)

    config.autoencoder = d(
        config_file='vq-f16-jax.yaml',
    )
    config.resume_root="assets/ckpts/cc3m-285000.ckpt"
    config.adapter_path=None
    config.optimizer = d(
            name='adamw',
            lr=0.0002,
            weight_decay=0.03,
            betas=(0.99, 0.99),
    )
    config.lr_scheduler = d(
            name='customized',
            warmup_steps=5000
    )
    config.nnet = d(
        name='uvit_t2i_vq',
        img_size=16,
        codebook_size=1024,
        in_chans=4,
        embed_dim=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=False,
        clip_dim=1280,
        num_clip_token=77,
        use_checkpoint=True,
        skip=True,
        d_prj=32,
        is_shared=False
    )
    config.muse = d(
        ignore_ind=-1,
        smoothing=0.1,
        gen_temp=4.5
    )
    config.sample = d(
        sample_steps=36,
        n_samples=50,
        mini_batch_size=8,
        cfg=True,
        linear_inc_scale=True,
        scale=10.,
        path='',
        lambdaA=2.0, # Stage I: 2.0; Stage II: TODO
        lambdaB=5.0, # Stage I: 5.0; Stage II: TODO
    )
    return config

print("cuda available:",torch.cuda.is_available())
print("cuda device count:",torch.cuda.device_count())
print("cuda device name:",torch.cuda.get_device_name(0))
print(os.system("nvidia-smi"))
print(os.system("nvcc --version"))

empty_context = np.load("assets/contexts/empty_context.npy")

config = get_config()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# Load open_clip and vq model
prompt_model,_,_ = open_clip.create_model_and_transforms('ViT-bigG-14', 'laion2b_s39b_b160k',precision='fp16')
prompt_model = prompt_model.to(device)
prompt_model.eval()
tokenizer = open_clip.get_tokenizer('ViT-bigG-14')
print("GPU memory:",torch.cuda.memory_allocated(0))



print("downloading cc3m-285000.ckpt")
os.makedirs("assets/ckpts/cc3m-285000.ckpt",exist_ok=True)

os.system("wget https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth -O assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth")
os.system("wget https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth -O assets/ckpts/cc3m-285000.ckpt/optimizer.pth")
os.system("wget https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth -O assets/ckpts/cc3m-285000.ckpt/nnet.pth")
os.system("wget https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth -O assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth")
os.system("wget https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth -O assets/ckpts/cc3m-285000.ckpt/step.pth")
os.system("wget https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt -O assets/vqgan_jax_strongaug.ckpt")
os.system("ls assets/ckpts/cc3m-285000.ckpt")

# wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth","assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth")
# wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth","assets/ckpts/cc3m-285000.ckpt/optimizer.pth")
# wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth","assets/ckpts/cc3m-285000.ckpt/nnet.pth")
# wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth","assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth")
# wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth","assets/ckpts/cc3m-285000.ckpt/step.pth")
# wget.download("https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt","assets/vqgan_jax_strongaug.ckpt")
# os.system("ls assets/ckpts/cc3m-285000.ckpt")
def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    


def cfg_nnet(x, context, scale=None,lambdaA=None,lambdaB=None):
    _cond = nnet_ema(x, context=context)
    _cond_w_adapter = nnet_ema(x,context=context,use_adapter=True)
    _empty_context = torch.tensor(empty_context, device=device)
    _empty_context = einops.repeat(_empty_context, 'L D -> B L D', B=x.size(0))
    _uncond = nnet_ema(x, context=_empty_context)
    res = _cond + scale * (_cond - _uncond)
    if lambdaA is not None:
        res = _cond_w_adapter + lambdaA*(_cond_w_adapter - _cond) + lambdaB*(_cond - _uncond)
    return res

def unprocess(x):
    x.clamp_(0., 1.)
    return x



vq_model = taming.models.vqgan.get_model('vq-f16-jax.yaml')
vq_model.eval()
vq_model.requires_grad_(False)
vq_model.to(device)

## config

muse = MUSE(codebook_size=vq_model.n_embed, device=device, **config.muse)

train_state = utils.initialize_train_state(config, device)
train_state.resume(ckpt_root=config.resume_root)
nnet_ema = train_state.nnet_ema
nnet_ema.eval()
nnet_ema.requires_grad_(False)
nnet_ema.to(device)
style_ref = {
    "None":None,
    "0102":"style_adapter/0102.pth",
    "0103":"style_adapter/0103.pth",
    "0106":"style_adapter/0106.pth",
    "0108":"style_adapter/0108.pth",
    "0301":"style_adapter/0301.pth",
    "0305":"style_adapter/0305.pth",
    }
style_postfix ={
    "None":"",
    "0102":" in watercolor painting style",
    "0103":" in watercolor painting style",
    "0106":" in line drawing style",
    "0108":" in oil painting style",
    "0301":" in 3d rendering style",
    "0305":" in kid crayon drawing style",
}

def decode(_batch):
    return vq_model.decode_code(_batch)

def process(prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image=None):
    config.sample.lambdaA = lambdaA
    config.sample.lambdaB = lambdaB
    config.sample.sample_steps = sample_steps
    print(style)
    adapter_path = style_ref[style]
    adapter_postfix = style_postfix[style]
    print(f"load adapter path: {adapter_path}")
    if adapter_path is not None:
        nnet_ema.adapter.load_state_dict(torch.load(adapter_path))
    else:
        config.sample.lambdaA=None
        config.sample.lambdaB=None
    print("load adapter Done!")
    # Encode prompt
    prompt = prompt+adapter_postfix
    text_tokens = tokenizer(prompt).to(device)
    text_embedding = prompt_model.encode_text(text_tokens)
    text_embedding = text_embedding.repeat(num_samples, 1, 1) # B 77 1280
    print(text_embedding.shape)
   
    print(f"lambdaA: {lambdaA}, lambdaB: {lambdaB}, sample_steps: {sample_steps}")
    if seed==-1:
        seed = random.randint(0,65535)
    config.seed = seed
    print(f"seed: {seed}")
    set_seed(config.seed)
    res = muse.generate(config,num_samples,cfg_nnet,decode,is_eval=True,context=text_embedding)
    print(res.shape)
    res = (res*255+0.5).clamp_(0,255).permute(0,2,3,1).to('cpu',torch.uint8).numpy()
    im = [res[i] for i in range(num_samples)]
    return im

block = gr.Blocks()
with block:
    with gr.Row():
        gr.Markdown("## StyleDrop based on Muse (Inference Only) ")
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
            seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234)
            style = gr.Radio(choices=["0102","0103","0106","0108","0305","None"],type="value",value="None",label="Style")

            with gr.Accordion("Advanced options",open=False):
                lambdaA = gr.Slider(label="lambdaA", minimum=0.0, maximum=5.0, value=2.0, step=0.01)
                lambdaB = gr.Slider(label="lambdaB", minimum=0.0, maximum=10.0, value=5.0, step=0.01)
                sample_steps = gr.Slider(label="Sample steps", minimum=1, maximum=50, value=36, step=1)
                image=gr.Image(value=None)
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(columns=2, height='auto')
            
    with gr.Row():
        examples = [
            [   
                "A banana on the table",
                1,2.0,5.0,"0103",1234,36,
                "data/image_01_03.jpg",
            ],
            [
                
                "A cow",
                1,2.0,5.0,"0102",1234,36,
                "data/image_01_02.jpg",
            ],
            [
                
                "A portrait of tabby cat",
                1,2.0,5.0,"0106",1234,36,
                "data/image_01_06.jpg",
            ],
            [   
               
                "A church in the field",
                1,2.0,5.0,"0108",1234,36,
                 "data/image_01_08.jpg",
            ],
            [
                
                "A Christmas tree",
                1,2.0,5.0,"0305",1234,36,
                "data/image_03_05.jpg",
            ]
            
        ]
        gr.Examples(examples=examples,
                        fn=process,
                        inputs=[
                            prompt,
                            num_samples,lambdaA,lambdaB,style,seed,sample_steps,image,
                        ],
                        outputs=result_gallery,
                        cache_examples=os.getenv('SYSTEM') == 'spaces'
                        )
    ips = [prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image]
    run_button.click(
        fn=process,
        inputs=ips,
        outputs=[result_gallery]
    )
block.queue().launch(share=False)