Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn as nn | |
import math | |
from loguru import logger | |
import timm | |
from timm.models.layers import trunc_normal_ | |
from timm.models.vision_transformer import PatchEmbed, Mlp | |
assert timm.__version__ == "0.3.2" # version check | |
import einops | |
import torch.utils.checkpoint | |
import torch.nn.functional as F | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, vocab_size, hidden_size, max_position_embeddings, dropout=0.1): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(vocab_size, hidden_size) | |
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6) | |
self.dropout = nn.Dropout(dropout) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1))) | |
torch.nn.init.normal_(self.word_embeddings.weight, std=.02) | |
torch.nn.init.normal_(self.position_embeddings.weight, std=.02) | |
def forward( | |
self, input_ids | |
): | |
input_shape = input_ids.size() | |
seq_length = input_shape[1] | |
position_ids = self.position_ids[:, :seq_length] | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings = inputs_embeds + position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class MlmLayer(nn.Module): | |
def __init__(self, feat_emb_dim, word_emb_dim, vocab_size): | |
super().__init__() | |
self.fc = nn.Linear(feat_emb_dim, word_emb_dim) | |
self.gelu = nn.GELU() | |
self.ln = nn.LayerNorm(word_emb_dim) | |
self.bias = nn.Parameter(torch.zeros(1, 1, vocab_size)) | |
def forward(self, x, word_embeddings): | |
mlm_hidden = self.fc(x) | |
mlm_hidden = self.gelu(mlm_hidden) | |
mlm_hidden = self.ln(mlm_hidden) | |
word_embeddings = word_embeddings.transpose(0, 1) | |
logits = torch.matmul(mlm_hidden, word_embeddings) | |
logits = logits + self.bias | |
return logits | |
def patchify(imgs, patch_size): | |
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) | |
return x | |
def unpatchify(x, channels=3, flatten=False): | |
patch_size = int((x.shape[2] // channels) ** 0.5) | |
h = w = int(x.shape[1] ** .5) | |
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2] | |
if flatten: | |
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B (h p1 w p2) C', h=h, p1=patch_size, p2=patch_size) | |
else: | |
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
if XFORMERS_IS_AVAILBLE: | |
qkv = self.qkv(x) | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D | |
x = xformers.ops.memory_efficient_attention(q, k, v) | |
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) | |
else: | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale) | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) | |
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x, skip=None): | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint(self._forward, x, skip) | |
else: | |
return self._forward(x, skip) | |
def _forward(self, x, skip=None): | |
if self.skip_linear is not None: | |
x = self.skip_linear(torch.cat([x, skip], dim=-1)) | |
x = x + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class UViT(nn.Module): | |
def __init__(self, img_size=16, patch_size=1, in_chans=8, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., | |
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, num_classes=-1, | |
use_checkpoint=False, skip=True, codebook_size=1024): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_classes = num_classes | |
self.in_chans = in_chans | |
self.skip = skip | |
logger.debug(f'codebook size in nnet: {codebook_size}') | |
self.codebook_size = codebook_size | |
if num_classes > 0: | |
self.extras = 1 | |
vocab_size = codebook_size + num_classes + 1 | |
else: | |
self.extras = 0 | |
vocab_size = codebook_size + 1 | |
self.token_emb = BertEmbeddings(vocab_size=vocab_size, | |
hidden_size=embed_dim, | |
max_position_embeddings=int(img_size ** 2) + self.extras, | |
dropout=0.1) | |
logger.debug(f'token emb weight shape: {self.token_emb.word_embeddings.weight.shape}') | |
if patch_size != 1: # downsamp | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, input_shape='bhwc') | |
logger.debug(f'patch emb weight shape: {self.patch_embed.proj.weight.shape}') | |
self.decoder_pred = nn.Linear(embed_dim, patch_size ** 2 * embed_dim, bias=True) | |
else: | |
self.patch_embed = None | |
self.decoder_pred = None | |
self.in_blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
for _ in range(depth // 2)]) | |
self.mid_block = Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
self.out_blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint) | |
for _ in range(depth // 2)]) | |
self.norm = norm_layer(embed_dim) | |
self.mlm_layer = MlmLayer(feat_emb_dim=embed_dim, word_emb_dim=embed_dim, vocab_size=vocab_size) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed'} | |
def forward(self, x, context=None): | |
assert len(x.shape) == 2 | |
if context is not None: | |
context = context + self.codebook_size + 1 # shift, mask token is self.codebook_size | |
x = torch.cat((context, x), dim=1) | |
x = self.token_emb(x.long()) | |
if self.patch_embed is not None: | |
featmap_downsampled = self.patch_embed( | |
x[:, self.extras:].reshape(-1, *self.patch_embed.img_size, self.embed_dim)).reshape(x.shape[0], -1, self.embed_dim) | |
x = torch.cat((x[:, :self.extras], featmap_downsampled), dim=1) | |
if self.skip: | |
skips = [] | |
for blk in self.in_blocks: | |
x = blk(x) | |
if self.skip: | |
skips.append(x) | |
x = self.mid_block(x) | |
for blk in self.out_blocks: | |
if self.skip: | |
x = blk(x, skips.pop()) | |
else: | |
x = blk(x) | |
x = self.norm(x) | |
if self.decoder_pred is not None: | |
featmap_upsampled = unpatchify(self.decoder_pred(x[:, self.extras:]), self.embed_dim, flatten=True) | |
x = torch.cat((x[:, :self.extras], featmap_upsampled), dim=1) | |
word_embeddings = self.token_emb.word_embeddings.weight.data.detach() | |
x = self.mlm_layer(x, word_embeddings) | |
x = x[:, self.extras:, :self.codebook_size] | |
return x | |