styledrop / libs /uvit_vq.py
zideliu's picture
StyleDrop init
28c6826
import os
import torch
import torch.nn as nn
import math
from loguru import logger
import timm
from timm.models.layers import trunc_normal_
from timm.models.vision_transformer import PatchEmbed, Mlp
assert timm.__version__ == "0.3.2" # version check
import einops
import torch.utils.checkpoint
import torch.nn.functional as F
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, vocab_size, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.word_embeddings.weight, std=.02)
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MlmLayer(nn.Module):
def __init__(self, feat_emb_dim, word_emb_dim, vocab_size):
super().__init__()
self.fc = nn.Linear(feat_emb_dim, word_emb_dim)
self.gelu = nn.GELU()
self.ln = nn.LayerNorm(word_emb_dim)
self.bias = nn.Parameter(torch.zeros(1, 1, vocab_size))
def forward(self, x, word_embeddings):
mlm_hidden = self.fc(x)
mlm_hidden = self.gelu(mlm_hidden)
mlm_hidden = self.ln(mlm_hidden)
word_embeddings = word_embeddings.transpose(0, 1)
logits = torch.matmul(mlm_hidden, word_embeddings)
logits = logits + self.bias
return logits
def patchify(imgs, patch_size):
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
return x
def unpatchify(x, channels=3, flatten=False):
patch_size = int((x.shape[2] // channels) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
if flatten:
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B (h p1 w p2) C', h=h, p1=patch_size, p2=patch_size)
else:
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
if XFORMERS_IS_AVAILBLE:
qkv = self.qkv(x)
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
else:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class UViT(nn.Module):
def __init__(self, img_size=16, patch_size=1, in_chans=8, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, num_classes=-1,
use_checkpoint=False, skip=True, codebook_size=1024):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_classes = num_classes
self.in_chans = in_chans
self.skip = skip
logger.debug(f'codebook size in nnet: {codebook_size}')
self.codebook_size = codebook_size
if num_classes > 0:
self.extras = 1
vocab_size = codebook_size + num_classes + 1
else:
self.extras = 0
vocab_size = codebook_size + 1
self.token_emb = BertEmbeddings(vocab_size=vocab_size,
hidden_size=embed_dim,
max_position_embeddings=int(img_size ** 2) + self.extras,
dropout=0.1)
logger.debug(f'token emb weight shape: {self.token_emb.word_embeddings.weight.shape}')
if patch_size != 1: # downsamp
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, input_shape='bhwc')
logger.debug(f'patch emb weight shape: {self.patch_embed.proj.weight.shape}')
self.decoder_pred = nn.Linear(embed_dim, patch_size ** 2 * embed_dim, bias=True)
else:
self.patch_embed = None
self.decoder_pred = None
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.mlm_layer = MlmLayer(feat_emb_dim=embed_dim, word_emb_dim=embed_dim, vocab_size=vocab_size)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward(self, x, context=None):
assert len(x.shape) == 2
if context is not None:
context = context + self.codebook_size + 1 # shift, mask token is self.codebook_size
x = torch.cat((context, x), dim=1)
x = self.token_emb(x.long())
if self.patch_embed is not None:
featmap_downsampled = self.patch_embed(
x[:, self.extras:].reshape(-1, *self.patch_embed.img_size, self.embed_dim)).reshape(x.shape[0], -1, self.embed_dim)
x = torch.cat((x[:, :self.extras], featmap_downsampled), dim=1)
if self.skip:
skips = []
for blk in self.in_blocks:
x = blk(x)
if self.skip:
skips.append(x)
x = self.mid_block(x)
for blk in self.out_blocks:
if self.skip:
x = blk(x, skips.pop())
else:
x = blk(x)
x = self.norm(x)
if self.decoder_pred is not None:
featmap_upsampled = unpatchify(self.decoder_pred(x[:, self.extras:]), self.embed_dim, flatten=True)
x = torch.cat((x[:, :self.extras], featmap_upsampled), dim=1)
word_embeddings = self.token_emb.word_embeddings.weight.data.detach()
x = self.mlm_layer(x, word_embeddings)
x = x[:, self.extras:, :self.codebook_size]
return x