File size: 15,566 Bytes
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
7a6bc02
 
 
 
 
 
 
 
 
83ae704
 
 
 
 
7a6bc02
83ae704
 
 
 
 
7a6bc02
83ae704
7a6bc02
 
 
 
83ae704
7a6bc02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
83ae704
 
7a6bc02
83ae704
 
 
 
7a6bc02
 
83ae704
7a6bc02
83ae704
 
 
7a6bc02
 
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
 
83ae704
7a6bc02
 
 
 
 
83ae704
 
 
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# gradio demo
# --------------------------------------------------------
import math
import gradio
import os
import torch
import numpy as np
import tempfile
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation

from mast3r.cloud_opt.sparse_ga import sparse_global_alignment
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess

from mast3r.model import AsymmetricMASt3R
from mast3r.utils.misc import hash_md5
import mast3r.utils.path_to_dust3r  # noqa
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.demo import get_args_parser as dust3r_get_args_parser

import matplotlib.pyplot as pl
pl.ion()

torch.backends.cuda.matmul.allow_tf32 = True  # for gpu >= Ampere and pytorch >= 1.12
batch_size = 1


def get_args_parser():
    parser = dust3r_get_args_parser()
    parser.add_argument('--share', action='store_true')

    actions = parser._actions
    for action in actions:
        if action.dest == 'model_name':
            action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]
    # change defaults
    parser.prog = 'mast3r demo'
    return parser


def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
                                 cam_color=None, as_pointcloud=False,
                                 transparent_cams=False, silent=False):
    assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
    pts3d = to_numpy(pts3d)
    imgs = to_numpy(imgs)
    focals = to_numpy(focals)
    cams2world = to_numpy(cams2world)

    scene = trimesh.Scene()

    # full pointcloud
    if as_pointcloud:
        pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)])
        col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
        pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
        scene.add_geometry(pct)
    else:
        meshes = []
        for i in range(len(imgs)):
            meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i].reshape(imgs[i].shape), mask[i]))
        mesh = trimesh.Trimesh(**cat_meshes(meshes))
        scene.add_geometry(mesh)

    # add each camera
    for i, pose_c2w in enumerate(cams2world):
        if isinstance(cam_color, list):
            camera_edge_color = cam_color[i]
        else:
            camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
        add_scene_cam(scene, pose_c2w, camera_edge_color,
                      None if transparent_cams else imgs[i], focals[i],
                      imsize=imgs[i].shape[1::-1], screen_width=cam_size)

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
    outfile = os.path.join(outdir, 'scene.glb')
    if not silent:
        print('(exporting 3D scene to', outfile, ')')
    scene.export(file_obj=outfile)
    return outfile


def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
                            clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
    """
    extract 3D_model (glb file) from a reconstructed scene
    """
    if scene is None:
        return None

    # get optimized values from scene
    rgbimg = scene.imgs
    focals = scene.get_focals().cpu()
    cams2world = scene.get_im_poses().cpu()

    # 3D pointcloud from depthmap, poses and intrinsics
    if TSDF_thresh > 0:
        tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh)
        pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth))
    else:
        pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth))
    msk = to_numpy([c > min_conf_thr for c in confs])
    return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
                                        transparent_cams=transparent_cams, cam_size=cam_size, silent=silent)


def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr,
                            as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
                            scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw):
    """
    from a list of images, run mast3r inference, sparse global aligner.
    then run get_3D_model_from_scene
    """
    imgs = load_images(filelist, size=image_size, verbose=not silent)
    if len(imgs) == 1:
        imgs = [imgs[0], copy.deepcopy(imgs[0])]
        imgs[1]['idx'] = 1
        filelist = [filelist[0], filelist[0] + '_2']

    scene_graph_params = [scenegraph_type]
    if scenegraph_type in ["swin", "logwin"]:
        scene_graph_params.append(str(winsize))
    elif scenegraph_type == "oneref":
        scene_graph_params.append(str(refid))
    if scenegraph_type in ["swin", "logwin"] and not win_cyclic:
        scene_graph_params.append('noncyclic')
    scene_graph = '-'.join(scene_graph_params)
    pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True)
    if optim_level == 'coarse':
        niter2 = 0
    # Sparse GA (forward mast3r -> matching -> 3D optim -> 2D refinement -> triangulation)
    scene = sparse_global_alignment(filelist, pairs, os.path.join(outdir, 'cache'),
                                    model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device,
                                    opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, **kw)
    outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
                                      clean_depth, transparent_cams, cam_size, TSDF_thresh)
    return scene, outfile


def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type):
    num_files = len(inputfiles) if inputfiles is not None else 1
    show_win_controls = scenegraph_type in ["swin", "logwin"]
    show_winsize = scenegraph_type in ["swin", "logwin"]
    show_cyclic = scenegraph_type in ["swin", "logwin"]
    max_winsize, min_winsize = 1, 1
    if scenegraph_type == "swin":
        if win_cyclic:
            max_winsize = max(1, math.ceil((num_files - 1) / 2))
        else:
            max_winsize = num_files - 1
    elif scenegraph_type == "logwin":
        if win_cyclic:
            half_size = math.ceil((num_files - 1) / 2)
            max_winsize = max(1, math.ceil(math.log(half_size, 2)))
        else:
            max_winsize = max(1, math.ceil(math.log(num_files, 2)))
    winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
                            minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize)
    win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic)
    win_col = gradio.Column(visible=show_win_controls)
    refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
                          maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref')
    return win_col, winsize, win_cyclic, refid


def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False, share=False):
    if not silent:
        print('Outputing stuff in', tmpdirname)

    recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size)
    model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent)
    with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="MASt3R Demo") as demo:
        # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
        scene = gradio.State(None)
        gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
        with gradio.Column():
            inputfiles = gradio.File(file_count="multiple")
            with gradio.Row():
                lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01)
                niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000,
                                       label="num_iterations", info="For coarse alignment!")
                lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001)
                niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000,
                                       label="num_iterations", info="For refinement!")
                optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"],
                                              value='refine', label="OptLevel",
                                              info="Optimization level")
                shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
                                                    info="Only optimize one set of intrinsics for all views")

                scenegraph_type = gradio.Dropdown(["complete", "swin", "logwin", "oneref"],
                                                  value='complete', label="Scenegraph",
                                                  info="Define how to make pairs",
                                                  interactive=True)
                with gradio.Column(visible=False) as win_col:
                    winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
                                            minimum=1, maximum=1, step=1)
                    win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence")
                refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)

            run_btn = gradio.Button("Run")

            with gradio.Row():
                # adjust the confidence threshold
                min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
                # adjust the camera size in the output pointcloud
                cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
                TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01)
            with gradio.Row():
                as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
                # two post process implemented
                mask_sky = gradio.Checkbox(value=False, label="Mask sky")
                clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
                transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")

            outmodel = gradio.Model3D()

            # events
            scenegraph_type.change(set_scenegraph_options,
                                   inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                                   outputs=[win_col, winsize, win_cyclic, refid])
            inputfiles.change(set_scenegraph_options,
                              inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                              outputs=[win_col, winsize, win_cyclic, refid])
            win_cyclic.change(set_scenegraph_options,
                              inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                              outputs=[win_col, winsize, win_cyclic, refid])
            run_btn.click(fn=recon_fun,
                          inputs=[inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, as_pointcloud,
                                  mask_sky, clean_depth, transparent_cams, cam_size,
                                  scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics],
                          outputs=[scene, outmodel])
            min_conf_thr.release(fn=model_from_scene_fun,
                                 inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                         clean_depth, transparent_cams, cam_size, TSDF_thresh],
                                 outputs=outmodel)
            cam_size.change(fn=model_from_scene_fun,
                            inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                    clean_depth, transparent_cams, cam_size, TSDF_thresh],
                            outputs=outmodel)
            TSDF_thresh.change(fn=model_from_scene_fun,
                               inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                       clean_depth, transparent_cams, cam_size, TSDF_thresh],
                               outputs=outmodel)
            as_pointcloud.change(fn=model_from_scene_fun,
                                 inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                         clean_depth, transparent_cams, cam_size, TSDF_thresh],
                                 outputs=outmodel)
            mask_sky.change(fn=model_from_scene_fun,
                            inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                    clean_depth, transparent_cams, cam_size, TSDF_thresh],
                            outputs=outmodel)
            clean_depth.change(fn=model_from_scene_fun,
                               inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                       clean_depth, transparent_cams, cam_size, TSDF_thresh],
                               outputs=outmodel)
            transparent_cams.change(model_from_scene_fun,
                                    inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
                                            clean_depth, transparent_cams, cam_size, TSDF_thresh],
                                    outputs=outmodel)
    demo.launch(share=False, server_name=server_name, server_port=server_port)


if __name__ == '__main__':
    parser = get_args_parser()
    args = parser.parse_args()

    if args.server_name is not None:
        server_name = args.server_name
    else:
        server_name = '0.0.0.0' if args.local_network else '127.0.0.1'

    if args.weights is not None:
        weights_path = args.weights
    else:
        weights_path = "naver/" + args.model_name

    model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device)
    chkpt_tag = hash_md5(weights_path)

    # mast3r will write the 3D model inside tmpdirname/chkpt_tag
    if args.tmp_dir is not None:
        tmpdirname = args.tmp_dir
        cache_path = os.path.join(tmpdirname, chkpt_tag)
        os.makedirs(cache_path, exist_ok=True)
        main_demo(cache_path, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent,
                  share=args.share)
    else:
        with tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') as tmpdirname:
            cache_path = os.path.join(tmpdirname, chkpt_tag)
            os.makedirs(cache_path, exist_ok=True)
            main_demo(tmpdirname, model, args.device, args.image_size,
                      server_name, args.server_port, silent=args.silent,
                      share=args.share)