File size: 8,038 Bytes
83ae704 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# coarse to fine utilities
# --------------------------------------------------------
import numpy as np
def crop_tag(cell):
return f'[{cell[1]}:{cell[3]},{cell[0]}:{cell[2]}]'
def crop_slice(cell):
return slice(cell[1], cell[3]), slice(cell[0], cell[2])
def _start_pos(total_size, win_size, overlap):
# we must have AT LEAST overlap between segments
# first segment starts at 0, last segment starts at total_size-win_size
assert 0 <= overlap < 1
assert total_size >= win_size
spacing = win_size * (1 - overlap)
last_pt = total_size - win_size
n_windows = 2 + int((last_pt - 1) // spacing)
return np.linspace(0, last_pt, n_windows).round().astype(int)
def multiple_of_16(x):
return (x // 16) * 16
def _make_overlapping_grid(H, W, size, overlap):
H_win = multiple_of_16(H * size // max(H, W))
W_win = multiple_of_16(W * size // max(H, W))
x = _start_pos(W, W_win, overlap)
y = _start_pos(H, H_win, overlap)
grid = np.stack(np.meshgrid(x, y, indexing='xy'), axis=-1)
grid = np.concatenate((grid, grid + (W_win, H_win)), axis=-1)
return grid.reshape(-1, 4)
def _cell_size(cell2):
width, height = cell2[:, 2] - cell2[:, 0], cell2[:, 3] - cell2[:, 1]
assert width.min() >= 0
assert height.min() >= 0
return width, height
def _norm_windows(cell2, H2, W2, forced_resolution=None):
# make sure the window aspect ratio is 3/4, or the output resolution is forced_resolution if defined
outcell = cell2.copy()
width, height = _cell_size(cell2)
width2, height2 = width.clip(max=W2), height.clip(max=H2)
if forced_resolution is None:
width2[width < height] = (height2[width < height] * 3.01 / 4).clip(max=W2)
height2[width >= height] = (width2[width >= height] * 3.01 / 4).clip(max=H2)
else:
forced_H, forced_W = forced_resolution
width2[:] = forced_W
height2[:] = forced_H
half = (width2 - width) / 2
outcell[:, 0] -= half
outcell[:, 2] += half
half = (height2 - height) / 2
outcell[:, 1] -= half
outcell[:, 3] += half
# proj to integers
outcell = np.floor(outcell).astype(int)
# Take care of flooring errors
tmpw, tmph = _cell_size(outcell)
outcell[:, 0] += tmpw.astype(tmpw.dtype) - width2.astype(tmpw.dtype)
outcell[:, 1] += tmph.astype(tmpw.dtype) - height2.astype(tmpw.dtype)
# make sure 0 <= x < W2 and 0 <= y < H2
outcell[:, 0::2] -= outcell[:, [0]].clip(max=0)
outcell[:, 1::2] -= outcell[:, [1]].clip(max=0)
outcell[:, 0::2] -= outcell[:, [2]].clip(min=W2) - W2
outcell[:, 1::2] -= outcell[:, [3]].clip(min=H2) - H2
width, height = _cell_size(outcell)
assert np.all(width == width2.astype(width.dtype)) and np.all(
height == height2.astype(height.dtype)), "Error, output is not of the expected shape."
assert np.all(width <= W2)
assert np.all(height <= H2)
return outcell
def _weight_pixels(cell, pix, assigned, gauss_var=2):
center = cell.reshape(-1, 2, 2).mean(axis=1)
width, height = _cell_size(cell)
# square distance between each cell center and each point
dist = (center[:, None] - pix[None]) / np.c_[width, height][:, None]
dist2 = np.square(dist).sum(axis=-1)
assert assigned.shape == dist2.shape
res = np.where(assigned, np.exp(-gauss_var * dist2), 0)
return res
def pos2d_in_rect(p1, cell1):
x, y = p1.T
l, t, r, b = cell1
assigned = (l <= x) & (x < r) & (t <= y) & (y < b)
return assigned
def _score_cell(cell1, H2, W2, p1, p2, min_corres=10, forced_resolution=None):
assert p1.shape == p2.shape
# compute keypoint assignment
assigned = pos2d_in_rect(p1, cell1[None].T)
assert assigned.shape == (len(cell1), len(p1))
# remove cells without correspondences
valid_cells = assigned.sum(axis=1) >= min_corres
cell1 = cell1[valid_cells]
assigned = assigned[valid_cells]
if not valid_cells.any():
return cell1, cell1, assigned
# fill-in the assigned points in both image
assigned_p1 = np.empty((len(cell1), len(p1), 2), dtype=np.float32)
assigned_p2 = np.empty((len(cell1), len(p2), 2), dtype=np.float32)
assigned_p1[:] = p1[None]
assigned_p2[:] = p2[None]
assigned_p1[~assigned] = np.nan
assigned_p2[~assigned] = np.nan
# find the median center and scale of assigned points in each cell
# cell_center1 = np.nanmean(assigned_p1, axis=1)
cell_center2 = np.nanmean(assigned_p2, axis=1)
im1_q25, im1_q75 = np.nanquantile(assigned_p1, (0.1, 0.9), axis=1)
im2_q25, im2_q75 = np.nanquantile(assigned_p2, (0.1, 0.9), axis=1)
robust_std1 = (im1_q75 - im1_q25).clip(20.)
robust_std2 = (im2_q75 - im2_q25).clip(20.)
cell_size1 = (cell1[:, 2:4] - cell1[:, 0:2])
cell_size2 = cell_size1 * robust_std2 / robust_std1
cell2 = np.c_[cell_center2 - cell_size2 / 2, cell_center2 + cell_size2 / 2]
# make sure cell bounds are valid
cell2 = _norm_windows(cell2, H2, W2, forced_resolution=forced_resolution)
# compute correspondence weights
corres_weights = _weight_pixels(cell1, p1, assigned) * _weight_pixels(cell2, p2, assigned)
# return a list of window pairs and assigned correspondences
return cell1, cell2, corres_weights
def greedy_selection(corres_weights, target=0.9):
# corres_weight = (n_cell_pair, n_corres) matrix.
# If corres_weight[c,p]>0, means that correspondence p is visible in cell pair p
assert 0 < target <= 1
corres_weights = corres_weights.copy()
total = corres_weights.max(axis=0).sum()
target *= total
# init = empty
res = []
cur = np.zeros(corres_weights.shape[1]) # current selection
while cur.sum() < target:
# pick the nex best cell pair
best = corres_weights.sum(axis=1).argmax()
res.append(best)
# update current
cur += corres_weights[best]
# print('appending', best, 'with score', corres_weights[best].sum(), '-->', cur.sum())
# remove from all other views
corres_weights = (corres_weights - corres_weights[best]).clip(min=0)
return res
def select_pairs_of_crops(img_q, img_b, pos2d_in_query, pos2d_in_ref, maxdim=512, overlap=.5, forced_resolution=None):
# prepare the overlapping cells
grid_q = _make_overlapping_grid(*img_q.shape[:2], maxdim, overlap)
grid_b = _make_overlapping_grid(*img_b.shape[:2], maxdim, overlap)
assert forced_resolution is None or len(forced_resolution) == 2
if isinstance(forced_resolution[0], int) or not len(forced_resolution[0]) == 2:
forced_resolution1 = forced_resolution2 = forced_resolution
else:
assert len(forced_resolution[1]) == 2
forced_resolution1 = forced_resolution[0]
forced_resolution2 = forced_resolution[1]
# Make sure crops respect constraints
grid_q = _norm_windows(grid_q.astype(float), *img_q.shape[:2], forced_resolution=forced_resolution1)
grid_b = _norm_windows(grid_b.astype(float), *img_b.shape[:2], forced_resolution=forced_resolution2)
# score cells
pairs_q = _score_cell(grid_q, *img_b.shape[:2], pos2d_in_query, pos2d_in_ref, forced_resolution=forced_resolution2)
pairs_b = _score_cell(grid_b, *img_q.shape[:2], pos2d_in_ref, pos2d_in_query, forced_resolution=forced_resolution1)
pairs_b = pairs_b[1], pairs_b[0], pairs_b[2] # cellq, cellb, corres_weights
# greedy selection until all correspondences are generated
cell1, cell2, corres_weights = map(np.concatenate, zip(pairs_q, pairs_b))
if len(corres_weights) == 0:
return # tolerated for empty generators
order = greedy_selection(corres_weights, target=0.9)
for i in order:
def pair_tag(qi, bi): return (str(qi) + crop_tag(cell1[i]), str(bi) + crop_tag(cell2[i]))
yield cell1[i], cell2[i], pair_tag
|