Demo / mast3r /demo.py
zino36's picture
Update mast3r/demo.py
ca69aa3 verified
raw
history blame
17.4 kB
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# sparse gradio demo functions
# --------------------------------------------------------
import math
import gradio
import os
import numpy as np
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation
import tempfile
import shutil
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess
import mast3r.utils.path_to_dust3r # noqa
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.demo import get_args_parser as dust3r_get_args_parser
import matplotlib.pyplot as pl
class SparseGAState():
def __init__(self, sparse_ga, should_delete=False, cache_dir=None, outfile_name=None):
self.sparse_ga = sparse_ga
self.cache_dir = cache_dir
self.outfile_name = outfile_name
self.should_delete = should_delete
def __del__(self):
if not self.should_delete:
return
if self.cache_dir is not None and os.path.isdir(self.cache_dir):
shutil.rmtree(self.cache_dir)
self.cache_dir = None
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
def get_args_parser():
parser = dust3r_get_args_parser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--gradio_delete_cache', default=None, type=int,
help='age/frequency at which gradio removes the file. If >0, matching cache is purged')
actions = parser._actions
for action in actions:
if action.dest == 'model_name':
action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]
# change defaults
parser.prog = 'mast3r demo'
return parser
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
valid_msk = np.isfinite(pts.sum(axis=1))
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
pts3d_i = pts3d[i].reshape(imgs[i].shape)
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(silent, scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene_state is None:
return None
outfile = scene_state.outfile_name
if outfile is None:
return None
# get optimized values from scene
scene = scene_state.sparse_ga
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
if TSDF_thresh > 0:
tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh)
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth))
else:
pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth))
msk = to_numpy([c > min_conf_thr for c in confs])
return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, silent=silent)
def get_reconstructed_scene(outdir, gradio_delete_cache, model, device, silent, image_size, current_scene_state,
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw):
"""
from a list of images, run mast3r inference, sparse global aligner.
then run get_3D_model_from_scene
"""
imgs = load_images(filelist, size=image_size, verbose=not silent)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
filelist = [filelist[0], filelist[0] + '_2']
scene_graph_params = [scenegraph_type]
if scenegraph_type in ["swin", "logwin"]:
scene_graph_params.append(str(winsize))
elif scenegraph_type == "oneref":
scene_graph_params.append(str(refid))
if scenegraph_type in ["swin", "logwin"] and not win_cyclic:
scene_graph_params.append('noncyclic')
scene_graph = '-'.join(scene_graph_params)
pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True)
if optim_level == 'coarse':
niter2 = 0
# Sparse GA (forward mast3r -> matching -> 3D optim -> 2D refinement -> triangulation)
if current_scene_state is not None and \
not current_scene_state.should_delete and \
current_scene_state.cache_dir is not None:
cache_dir = current_scene_state.cache_dir
elif gradio_delete_cache:
cache_dir = tempfile.mkdtemp(suffix='_cache', dir=outdir)
else:
cache_dir = os.path.join(outdir, 'cache')
scene = sparse_global_alignment(filelist, pairs, cache_dir,
model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device,
opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics,
matching_conf_thr=matching_conf_thr, **kw)
if current_scene_state is not None and \
not current_scene_state.should_delete and \
current_scene_state.outfile_name is not None:
outfile_name = current_scene_state.outfile_name
else:
outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir)
scene_state = SparseGAState(scene, gradio_delete_cache, cache_dir, outfile_name)
outfile = get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh)
return scene_state, outfile
def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type):
num_files = len(inputfiles) if inputfiles is not None else 1
show_win_controls = scenegraph_type in ["swin", "logwin"]
show_winsize = scenegraph_type in ["swin", "logwin"]
show_cyclic = scenegraph_type in ["swin", "logwin"]
max_winsize, min_winsize = 1, 1
if scenegraph_type == "swin":
if win_cyclic:
max_winsize = max(1, math.ceil((num_files - 1) / 2))
else:
max_winsize = num_files - 1
elif scenegraph_type == "logwin":
if win_cyclic:
half_size = math.ceil((num_files - 1) / 2)
max_winsize = max(1, math.ceil(math.log(half_size, 2)))
else:
max_winsize = max(1, math.ceil(math.log(num_files, 2)))
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize)
win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic)
win_col = gradio.Column(visible=show_win_controls)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref')
return win_col, winsize, win_cyclic, refid
def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False,
share=False, gradio_delete_cache=False):
if not silent:
print('Outputing stuff in', tmpdirname)
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, gradio_delete_cache, model, device,
silent, image_size)
model_from_scene_fun = functools.partial(get_3D_model_from_scene, silent)
def get_context(delete_cache):
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "MASt3R Demo"
if delete_cache:
return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache))
else:
return gradio.Blocks(css=css, title="MASt3R Demo") # for compatibility with older versions
with get_context(gradio_delete_cache) as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
scene = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
with gradio.Row():
with gradio.Column():
with gradio.Row():
lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01)
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000,
label="num_iterations", info="For coarse alignment!")
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001)
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000,
label="num_iterations", info="For refinement!")
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"],
value='refine', label="OptLevel",
info="Optimization level")
with gradio.Row():
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5.,
minimum=0., maximum=30., step=0.1,
info="Before Fallback to Regr3D!")
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
info="Only optimize one set of intrinsics for all views")
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
("swin: sliding window", "swin"),
("logwin: sliding window with long range", "logwin"),
("oneref: match one image with all", "oneref")],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True)
with gradio.Column(visible=False) as win_col:
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1)
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence")
refid = gradio.Slider(label="Scene Graph: Id", value=0,
minimum=0, maximum=0, step=1, visible=False)
run_btn = gradio.Button("Run")
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
# two post process implemented
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
outmodel = gradio.Model3D()
# events
scenegraph_type.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
inputfiles.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
win_cyclic.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
run_btn.click(fn=recon_fun,
inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics],
outputs=[scene, outmodel])
min_conf_thr.release(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
cam_size.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
TSDF_thresh.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
as_pointcloud.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
mask_sky.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
clean_depth.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
transparent_cams.change(model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
demo.launch()