|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import gradio |
|
import os |
|
import torch |
|
import numpy as np |
|
import tempfile |
|
import functools |
|
import trimesh |
|
import copy |
|
from scipy.spatial.transform import Rotation |
|
|
|
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment |
|
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess |
|
|
|
from mast3r.model import AsymmetricMASt3R |
|
from mast3r.utils.misc import hash_md5 |
|
import mast3r.utils.path_to_dust3r |
|
from dust3r.image_pairs import make_pairs |
|
from dust3r.utils.image import load_images |
|
from dust3r.utils.device import to_numpy |
|
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes |
|
from dust3r.demo import get_args_parser as dust3r_get_args_parser |
|
|
|
import matplotlib.pyplot as pl |
|
pl.ion() |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
batch_size = 1 |
|
|
|
|
|
def get_args_parser(): |
|
parser = dust3r_get_args_parser() |
|
parser.add_argument('--share', action='store_true') |
|
|
|
actions = parser._actions |
|
for action in actions: |
|
if action.dest == 'model_name': |
|
action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"] |
|
|
|
parser.prog = 'mast3r demo' |
|
return parser |
|
|
|
|
|
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, |
|
cam_color=None, as_pointcloud=False, |
|
transparent_cams=False, silent=False): |
|
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) |
|
pts3d = to_numpy(pts3d) |
|
imgs = to_numpy(imgs) |
|
focals = to_numpy(focals) |
|
cams2world = to_numpy(cams2world) |
|
|
|
scene = trimesh.Scene() |
|
|
|
|
|
if as_pointcloud: |
|
pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]) |
|
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) |
|
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) |
|
scene.add_geometry(pct) |
|
else: |
|
meshes = [] |
|
for i in range(len(imgs)): |
|
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i].reshape(imgs[i].shape), mask[i])) |
|
mesh = trimesh.Trimesh(**cat_meshes(meshes)) |
|
scene.add_geometry(mesh) |
|
|
|
|
|
for i, pose_c2w in enumerate(cams2world): |
|
if isinstance(cam_color, list): |
|
camera_edge_color = cam_color[i] |
|
else: |
|
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] |
|
add_scene_cam(scene, pose_c2w, camera_edge_color, |
|
None if transparent_cams else imgs[i], focals[i], |
|
imsize=imgs[i].shape[1::-1], screen_width=cam_size) |
|
|
|
rot = np.eye(4) |
|
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() |
|
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) |
|
outfile = os.path.join(outdir, 'scene.glb') |
|
if not silent: |
|
print('(exporting 3D scene to', outfile, ')') |
|
scene.export(file_obj=outfile) |
|
return outfile |
|
|
|
|
|
def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=2, as_pointcloud=False, mask_sky=False, |
|
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): |
|
""" |
|
extract 3D_model (glb file) from a reconstructed scene |
|
""" |
|
if scene is None: |
|
return None |
|
|
|
|
|
rgbimg = scene.imgs |
|
focals = scene.get_focals().cpu() |
|
cams2world = scene.get_im_poses().cpu() |
|
|
|
|
|
if TSDF_thresh > 0: |
|
tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh) |
|
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth)) |
|
else: |
|
pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth)) |
|
msk = to_numpy([c > min_conf_thr for c in confs]) |
|
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, |
|
transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) |
|
|
|
|
|
def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, optim_level, lr1, niter1, lr2, niter2, |
|
min_conf_thr, matching_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, |
|
cam_size, scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics, |
|
**kw): |
|
""" |
|
from a list of images, run mast3r inference, sparse global aligner. |
|
then run get_3D_model_from_scene |
|
""" |
|
imgs = load_images(filelist, size=image_size, verbose=not silent) |
|
if len(imgs) == 1: |
|
imgs = [imgs[0], copy.deepcopy(imgs[0])] |
|
imgs[1]['idx'] = 1 |
|
filelist = [filelist[0], filelist[0] + '_2'] |
|
|
|
scene_graph_params = [scenegraph_type] |
|
if scenegraph_type in ["swin", "logwin"]: |
|
scene_graph_params.append(str(winsize)) |
|
elif scenegraph_type == "oneref": |
|
scene_graph_params.append(str(refid)) |
|
if scenegraph_type in ["swin", "logwin"] and not win_cyclic: |
|
scene_graph_params.append('noncyclic') |
|
scene_graph = '-'.join(scene_graph_params) |
|
pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True) |
|
if optim_level == 'coarse': |
|
niter2 = 0 |
|
|
|
scene = sparse_global_alignment(filelist, pairs, os.path.join(outdir, 'cache'), |
|
model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device, |
|
opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, |
|
matching_conf_thr=matching_conf_thr, **kw) |
|
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh) |
|
return scene, outfile |
|
|
|
|
|
def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type): |
|
num_files = len(inputfiles) if inputfiles is not None else 1 |
|
show_win_controls = scenegraph_type in ["swin", "logwin"] |
|
show_winsize = scenegraph_type in ["swin", "logwin"] |
|
show_cyclic = scenegraph_type in ["swin", "logwin"] |
|
max_winsize, min_winsize = 1, 1 |
|
if scenegraph_type == "swin": |
|
if win_cyclic: |
|
max_winsize = max(1, math.ceil((num_files - 1) / 2)) |
|
else: |
|
max_winsize = num_files - 1 |
|
elif scenegraph_type == "logwin": |
|
if win_cyclic: |
|
half_size = math.ceil((num_files - 1) / 2) |
|
max_winsize = max(1, math.ceil(math.log(half_size, 2))) |
|
else: |
|
max_winsize = max(1, math.ceil(math.log(num_files, 2))) |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, |
|
minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize) |
|
win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic) |
|
win_col = gradio.Column(visible=show_win_controls) |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, |
|
maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref') |
|
return win_col, winsize, win_cyclic, refid |
|
|
|
|
|
def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False, share=False): |
|
if not silent: |
|
print('Outputing stuff in', tmpdirname) |
|
|
|
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size) |
|
model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) |
|
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="MASt3R Demo") as demo: |
|
|
|
scene = gradio.State(None) |
|
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>') |
|
with gradio.Column(): |
|
inputfiles = gradio.File(file_count="multiple") |
|
with gradio.Row(): |
|
with gradio.Column(): |
|
with gradio.Row(): |
|
lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) |
|
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, |
|
label="num_iterations", info="For coarse alignment!") |
|
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) |
|
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, |
|
label="num_iterations", info="For refinement!") |
|
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], |
|
value='refine', label="OptLevel", |
|
info="Optimization level") |
|
with gradio.Row(): |
|
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., |
|
minimum=0., maximum=30., step=0.1, |
|
info="Before Fallback to Regr3D!") |
|
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", |
|
info="Only optimize one set of intrinsics for all views") |
|
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), |
|
("swin: sliding window", "swin"), |
|
("logwin: sliding window with long range", "logwin"), |
|
("oneref: match one image with all", "oneref")], |
|
value='complete', label="Scenegraph", |
|
info="Define how to make pairs", |
|
interactive=True) |
|
with gradio.Column(visible=False) as win_col: |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, |
|
minimum=1, maximum=1, step=1) |
|
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, |
|
minimum=0, maximum=0, step=1, visible=False) |
|
|
|
run_btn = gradio.Button("Run") |
|
|
|
with gradio.Row(): |
|
|
|
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) |
|
|
|
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) |
|
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) |
|
with gradio.Row(): |
|
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") |
|
|
|
mask_sky = gradio.Checkbox(value=False, label="Mask sky") |
|
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") |
|
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") |
|
|
|
outmodel = gradio.Model3D() |
|
|
|
|
|
scenegraph_type.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
inputfiles.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
win_cyclic.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
run_btn.click(fn=recon_fun, |
|
inputs=[inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, |
|
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, |
|
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], |
|
outputs=[scene, outmodel]) |
|
min_conf_thr.release(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
cam_size.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
TSDF_thresh.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
as_pointcloud.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
mask_sky.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
clean_depth.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
transparent_cams.change(model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
demo.launch(share=False, server_name=server_name, server_port=server_port) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = get_args_parser() |
|
args = parser.parse_args() |
|
|
|
if args.server_name is not None: |
|
server_name = args.server_name |
|
else: |
|
server_name = '0.0.0.0' if args.local_network else '127.0.0.1' |
|
|
|
if args.weights is not None: |
|
weights_path = args.weights |
|
else: |
|
weights_path = "naver/" + args.model_name |
|
|
|
model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device) |
|
chkpt_tag = hash_md5(weights_path) |
|
|
|
|
|
if args.tmp_dir is not None: |
|
tmpdirname = args.tmp_dir |
|
cache_path = os.path.join(tmpdirname, chkpt_tag) |
|
os.makedirs(cache_path, exist_ok=True) |
|
main_demo(cache_path, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent, |
|
share=args.share) |
|
else: |
|
with tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') as tmpdirname: |
|
cache_path = os.path.join(tmpdirname, chkpt_tag) |
|
os.makedirs(cache_path, exist_ok=True) |
|
main_demo(tmpdirname, model, args.device, args.image_size, |
|
server_name, args.server_port, silent=args.silent, |
|
share=args.share) |
|
|