|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import mast3r.utils.path_to_dust3r |
|
from dust3r.utils.device import to_numpy |
|
from dust3r.utils.geometry import inv, geotrf |
|
|
|
|
|
def reciprocal_1d(corres_1_to_2, corres_2_to_1, ret_recip=False): |
|
is_reciprocal1 = (corres_2_to_1[corres_1_to_2] == np.arange(len(corres_1_to_2))) |
|
pos1 = is_reciprocal1.nonzero()[0] |
|
pos2 = corres_1_to_2[pos1] |
|
if ret_recip: |
|
return is_reciprocal1, pos1, pos2 |
|
return pos1, pos2 |
|
|
|
|
|
def extract_correspondences_from_pts3d(view1, view2, target_n_corres, rng=np.random, ret_xy=True, nneg=0): |
|
view1, view2 = to_numpy((view1, view2)) |
|
|
|
shape1, corres1_to_2 = reproject_view(view1['pts3d'], view2) |
|
shape2, corres2_to_1 = reproject_view(view2['pts3d'], view1) |
|
|
|
|
|
|
|
is_reciprocal1, pos1, pos2 = reciprocal_1d(corres1_to_2, corres2_to_1, ret_recip=True) |
|
is_reciprocal2 = (corres1_to_2[corres2_to_1] == np.arange(len(corres2_to_1))) |
|
|
|
if target_n_corres is None: |
|
if ret_xy: |
|
pos1 = unravel_xy(pos1, shape1) |
|
pos2 = unravel_xy(pos2, shape2) |
|
return pos1, pos2 |
|
|
|
available_negatives = min((~is_reciprocal1).sum(), (~is_reciprocal2).sum()) |
|
target_n_positives = int(target_n_corres * (1 - nneg)) |
|
n_positives = min(len(pos1), target_n_positives) |
|
n_negatives = min(target_n_corres - n_positives, available_negatives) |
|
|
|
if n_negatives + n_positives != target_n_corres: |
|
|
|
|
|
n_positives = target_n_corres - n_negatives |
|
assert n_positives <= len(pos1) |
|
|
|
assert n_positives <= len(pos1) |
|
assert n_positives <= len(pos2) |
|
assert n_negatives <= (~is_reciprocal1).sum() |
|
assert n_negatives <= (~is_reciprocal2).sum() |
|
assert n_positives + n_negatives == target_n_corres |
|
|
|
valid = np.ones(n_positives, dtype=bool) |
|
if n_positives < len(pos1): |
|
|
|
perm = rng.permutation(len(pos1))[:n_positives] |
|
pos1 = pos1[perm] |
|
pos2 = pos2[perm] |
|
|
|
if n_negatives > 0: |
|
|
|
def norm(p): return p / p.sum() |
|
pos1 = np.r_[pos1, rng.choice(shape1[0] * shape1[1], size=n_negatives, replace=False, p=norm(~is_reciprocal1))] |
|
pos2 = np.r_[pos2, rng.choice(shape2[0] * shape2[1], size=n_negatives, replace=False, p=norm(~is_reciprocal2))] |
|
valid = np.r_[valid, np.zeros(n_negatives, dtype=bool)] |
|
|
|
|
|
if ret_xy: |
|
pos1 = unravel_xy(pos1, shape1) |
|
pos2 = unravel_xy(pos2, shape2) |
|
return pos1, pos2, valid |
|
|
|
|
|
def reproject_view(pts3d, view2): |
|
shape = view2['pts3d'].shape[:2] |
|
return reproject(pts3d, view2['camera_intrinsics'], inv(view2['camera_pose']), shape) |
|
|
|
|
|
def reproject(pts3d, K, world2cam, shape): |
|
H, W, THREE = pts3d.shape |
|
assert THREE == 3 |
|
|
|
|
|
with np.errstate(divide='ignore', invalid='ignore'): |
|
pos = geotrf(K @ world2cam[:3], pts3d, norm=1, ncol=2) |
|
|
|
|
|
return (H, W), ravel_xy(pos, shape) |
|
|
|
|
|
def ravel_xy(pos, shape): |
|
H, W = shape |
|
with np.errstate(invalid='ignore'): |
|
qx, qy = pos.reshape(-1, 2).round().astype(np.int32).T |
|
quantized_pos = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(min=0, max=H - 1, out=qy) |
|
return quantized_pos |
|
|
|
|
|
def unravel_xy(pos, shape): |
|
|
|
return np.unravel_index(pos, shape)[0].base[:, ::-1].copy() |
|
|
|
|
|
def _rotation_origin_to_pt(target): |
|
""" Align the origin (0,0,1) with the target point (x,y,1) in projective space. |
|
Method: rotate z to put target on (x'+,0,1), then rotate on Y to get (0,0,1) and un-rotate z. |
|
""" |
|
from scipy.spatial.transform import Rotation |
|
x, y = target |
|
rot_z = np.arctan2(y, x) |
|
rot_y = np.arctan(np.linalg.norm(target)) |
|
R = Rotation.from_euler('ZYZ', [rot_z, rot_y, -rot_z]).as_matrix() |
|
return R |
|
|
|
|
|
def _dotmv(Trf, pts, ncol=None, norm=False): |
|
assert Trf.ndim >= 2 |
|
ncol = ncol or pts.shape[-1] |
|
|
|
|
|
output_reshape = pts.shape[:-1] |
|
if Trf.ndim >= 3: |
|
n = Trf.ndim - 2 |
|
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match' |
|
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) |
|
|
|
if pts.ndim > Trf.ndim: |
|
|
|
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) |
|
elif pts.ndim == 2: |
|
|
|
pts = pts[:, None, :] |
|
|
|
if pts.shape[-1] + 1 == Trf.shape[-1]: |
|
Trf = Trf.swapaxes(-1, -2) |
|
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] |
|
|
|
elif pts.shape[-1] == Trf.shape[-1]: |
|
Trf = Trf.swapaxes(-1, -2) |
|
pts = pts @ Trf |
|
else: |
|
pts = Trf @ pts.T |
|
if pts.ndim >= 2: |
|
pts = pts.swapaxes(-1, -2) |
|
|
|
if norm: |
|
pts = pts / pts[..., -1:] |
|
if norm != 1: |
|
pts *= norm |
|
|
|
res = pts[..., :ncol].reshape(*output_reshape, ncol) |
|
return res |
|
|
|
|
|
def crop_to_homography(K, crop, target_size=None): |
|
""" Given an image and its intrinsics, |
|
we want to replicate a rectangular crop with an homography, |
|
so that the principal point of the new 'crop' is centered. |
|
""" |
|
|
|
crop = np.round(crop) |
|
crop_size = crop[2:] - crop[:2] |
|
K2 = K.copy() |
|
K2[:2, 2] = crop_size / 2 |
|
|
|
|
|
|
|
corners = crop.reshape(-1, 2) |
|
corner_idx = np.abs(corners - K[:2, 2]).argmax(0) |
|
corner = corners[corner_idx, [0, 1]] |
|
|
|
corner2 = np.c_[[0, 0], crop_size][[0, 1], corner_idx] |
|
|
|
old_pt = _dotmv(np.linalg.inv(K), corner, norm=1) |
|
new_pt = _dotmv(np.linalg.inv(K2), corner2, norm=1) |
|
R = _rotation_origin_to_pt(old_pt) @ np.linalg.inv(_rotation_origin_to_pt(new_pt)) |
|
|
|
if target_size is not None: |
|
imsize = target_size |
|
target_size = np.asarray(target_size) |
|
scaling = min(target_size / crop_size) |
|
K2[:2] *= scaling |
|
K2[:2, 2] = target_size / 2 |
|
else: |
|
imsize = tuple(np.int32(crop_size).tolist()) |
|
|
|
return imsize, K2, R, K @ R @ np.linalg.inv(K2) |
|
|
|
|
|
def gen_random_crops(imsize, n_crops, resolution, aug_crop, rng=np.random): |
|
""" Generate random crops of size=resolution, |
|
for an input image upscaled to (imsize + randint(0 , aug_crop)) |
|
""" |
|
resolution_crop = np.array(resolution) * min(np.array(imsize) / resolution) |
|
|
|
|
|
|
|
scaling = np.exp(rng.uniform(0, np.log(1 + aug_crop / min(imsize)))) |
|
imsize2 = np.int32(np.array(imsize) * scaling) |
|
|
|
|
|
topleft = rng.random((n_crops, 2)) * (imsize2 - resolution_crop) |
|
crops = np.c_[topleft, topleft + resolution_crop] |
|
|
|
|
|
crops /= scaling |
|
return crops |
|
|
|
|
|
def in2d_rect(corres, crops): |
|
|
|
|
|
|
|
is_sup = (corres[:, None] >= crops[None, :, 0:2]) |
|
is_inf = (corres[:, None] < crops[None, :, 2:4]) |
|
return (is_sup & is_inf).all(axis=-1) |
|
|