|
|
|
|
|
|
|
|
|
|
|
|
|
import PIL.Image |
|
import PIL.Image as Image |
|
import numpy as np |
|
import torch |
|
import copy |
|
|
|
from mast3r.datasets.utils.cropping import (extract_correspondences_from_pts3d, |
|
gen_random_crops, in2d_rect, crop_to_homography) |
|
|
|
import mast3r.utils.path_to_dust3r |
|
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset, view_name, is_good_type |
|
from dust3r.datasets.utils.transforms import ImgNorm |
|
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates, geotrf, depthmap_to_camera_coordinates |
|
import dust3r.datasets.utils.cropping as cropping |
|
|
|
|
|
class MASt3RBaseStereoViewDataset(BaseStereoViewDataset): |
|
def __init__(self, *, |
|
split=None, |
|
resolution=None, |
|
transform=ImgNorm, |
|
aug_crop=False, |
|
aug_swap=False, |
|
aug_monocular=False, |
|
aug_portrait_or_landscape=True, |
|
aug_rot90=False, |
|
n_corres=0, |
|
nneg=0, |
|
n_tentative_crops=4, |
|
seed=None): |
|
super().__init__(split=split, resolution=resolution, transform=transform, aug_crop=aug_crop, seed=seed) |
|
self.is_metric_scale = False |
|
|
|
self.aug_swap = aug_swap |
|
self.aug_monocular = aug_monocular |
|
self.aug_portrait_or_landscape = aug_portrait_or_landscape |
|
self.aug_rot90 = aug_rot90 |
|
|
|
self.n_corres = n_corres |
|
self.nneg = nneg |
|
assert self.n_corres == 'all' or isinstance(self.n_corres, int) or (isinstance(self.n_corres, list) and len( |
|
self.n_corres) == self.num_views), f"Error, n_corres should either be 'all', a single integer or a list of length {self.num_views}" |
|
assert self.nneg == 0 or self.n_corres != 'all' |
|
self.n_tentative_crops = n_tentative_crops |
|
|
|
def _swap_view_aug(self, views): |
|
if self._rng.random() < 0.5: |
|
views.reverse() |
|
|
|
def _crop_resize_if_necessary(self, image, depthmap, intrinsics, resolution, rng=None, info=None): |
|
""" This function: |
|
- first downsizes the image with LANCZOS inteprolation, |
|
which is better than bilinear interpolation in |
|
""" |
|
if not isinstance(image, PIL.Image.Image): |
|
image = PIL.Image.fromarray(image) |
|
|
|
|
|
W, H = image.size |
|
assert resolution[0] >= resolution[1] |
|
if H > 1.1 * W: |
|
|
|
resolution = resolution[::-1] |
|
elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: |
|
|
|
if rng.integers(2) and self.aug_portrait_or_landscape: |
|
resolution = resolution[::-1] |
|
|
|
|
|
target_resolution = np.array(resolution) |
|
image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution) |
|
|
|
|
|
offset_factor = 0.5 |
|
intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=offset_factor) |
|
crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) |
|
image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) |
|
|
|
return image, depthmap, intrinsics2 |
|
|
|
def generate_crops_from_pair(self, view1, view2, resolution, aug_crop_arg, n_crops=4, rng=np.random): |
|
views = [view1, view2] |
|
|
|
if aug_crop_arg is False: |
|
|
|
for i in range(2): |
|
view = views[i] |
|
view['img'], view['depthmap'], view['camera_intrinsics'] = self._crop_resize_if_necessary(view['img'], |
|
view['depthmap'], |
|
view['camera_intrinsics'], |
|
resolution, |
|
rng=rng) |
|
view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], |
|
view['camera_intrinsics'], |
|
view['camera_pose']) |
|
return |
|
|
|
|
|
corres = extract_correspondences_from_pts3d(*views, target_n_corres=None, rng=rng) |
|
|
|
|
|
view_crops = [] |
|
crops_resolution = [] |
|
corres_msks = [] |
|
for i in range(2): |
|
|
|
if aug_crop_arg == 'auto': |
|
S = min(views[i]['img'].size) |
|
R = min(resolution) |
|
aug_crop = S * (S - R) // R |
|
aug_crop = max(.1 * S, aug_crop) |
|
else: |
|
aug_crop = aug_crop_arg |
|
|
|
|
|
assert resolution[0] >= resolution[1] |
|
W, H = imsize = views[i]['img'].size |
|
crop_resolution = resolution |
|
if H > 1.1 * W: |
|
|
|
crop_resolution = resolution[::-1] |
|
elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: |
|
|
|
if rng.integers(2): |
|
crop_resolution = resolution[::-1] |
|
|
|
crops = gen_random_crops(imsize, n_crops, crop_resolution, aug_crop=aug_crop, rng=rng) |
|
view_crops.append(crops) |
|
crops_resolution.append(crop_resolution) |
|
|
|
|
|
corres_msks.append(in2d_rect(corres[i], crops)) |
|
|
|
|
|
intersection = np.float32(corres_msks[0]).T @ np.float32(corres_msks[1]) |
|
|
|
best = np.unravel_index(intersection.argmax(), (n_crops, n_crops)) |
|
crops = [view_crops[i][c] for i, c in enumerate(best)] |
|
|
|
|
|
for i in range(2): |
|
view = views[i] |
|
imsize, K_new, R, H = crop_to_homography(view['camera_intrinsics'], crops[i], crops_resolution[i]) |
|
|
|
|
|
|
|
K_old = view['camera_intrinsics'] |
|
view['camera_intrinsics'] = K_new |
|
view['camera_pose'] = view['camera_pose'].copy() |
|
view['camera_pose'][:3, :3] = view['camera_pose'][:3, :3] @ R |
|
|
|
|
|
homo8 = (H / H[2, 2]).ravel().tolist()[:8] |
|
view['img'] = view['img'].transform(imsize, Image.Transform.PERSPECTIVE, |
|
homo8, |
|
resample=Image.Resampling.BICUBIC) |
|
|
|
depthmap2 = depthmap_to_camera_coordinates(view['depthmap'], K_old)[0] @ R[:, 2] |
|
view['depthmap'] = np.array(Image.fromarray(depthmap2).transform( |
|
imsize, Image.Transform.PERSPECTIVE, homo8)) |
|
|
|
if 'track_labels' in view: |
|
|
|
mapping, track_labels = np.unique(view['track_labels'], return_inverse=True) |
|
track_labels = track_labels.astype(np.uint32).reshape(view['track_labels'].shape) |
|
|
|
|
|
res = np.array(Image.fromarray(track_labels).transform(imsize, Image.Transform.PERSPECTIVE, homo8)) |
|
view['track_labels'] = mapping[res] |
|
|
|
|
|
view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], |
|
view['camera_intrinsics'], |
|
view['camera_pose']) |
|
|
|
def __getitem__(self, idx): |
|
if isinstance(idx, tuple): |
|
|
|
idx, ar_idx = idx |
|
else: |
|
assert len(self._resolutions) == 1 |
|
ar_idx = 0 |
|
|
|
|
|
if self.seed: |
|
self._rng = np.random.default_rng(seed=self.seed + idx) |
|
elif not hasattr(self, '_rng'): |
|
seed = torch.initial_seed() |
|
self._rng = np.random.default_rng(seed=seed) |
|
|
|
|
|
resolution = self._resolutions[ar_idx] |
|
views = self._get_views(idx, resolution, self._rng) |
|
assert len(views) == self.num_views |
|
|
|
for v, view in enumerate(views): |
|
assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" |
|
view['idx'] = (idx, ar_idx, v) |
|
view['is_metric_scale'] = self.is_metric_scale |
|
|
|
assert 'camera_intrinsics' in view |
|
if 'camera_pose' not in view: |
|
view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) |
|
else: |
|
assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' |
|
assert 'pts3d' not in view |
|
assert 'valid_mask' not in view |
|
assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' |
|
|
|
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) |
|
|
|
view['pts3d'] = pts3d |
|
view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1) |
|
|
|
self.generate_crops_from_pair(views[0], views[1], resolution=resolution, |
|
aug_crop_arg=self.aug_crop, |
|
n_crops=self.n_tentative_crops, |
|
rng=self._rng) |
|
for v, view in enumerate(views): |
|
|
|
width, height = view['img'].size |
|
view['true_shape'] = np.int32((height, width)) |
|
view['img'] = self.transform(view['img']) |
|
|
|
view['sky_mask'] = (view['depthmap'] < 0) |
|
|
|
if self.aug_swap: |
|
self._swap_view_aug(views) |
|
|
|
if self.aug_monocular: |
|
if self._rng.random() < self.aug_monocular: |
|
views = [copy.deepcopy(views[0]) for _ in range(len(views))] |
|
|
|
|
|
if self.n_corres > 0 and ('corres' not in view): |
|
corres1, corres2, valid = extract_correspondences_from_pts3d(*views, self.n_corres, |
|
self._rng, nneg=self.nneg) |
|
views[0]['corres'] = corres1 |
|
views[1]['corres'] = corres2 |
|
views[0]['valid_corres'] = valid |
|
views[1]['valid_corres'] = valid |
|
|
|
if self.aug_rot90 is False: |
|
pass |
|
elif self.aug_rot90 == 'same': |
|
rotate_90(views, k=self._rng.choice(4)) |
|
elif self.aug_rot90 == 'diff': |
|
rotate_90(views[:1], k=self._rng.choice(4)) |
|
rotate_90(views[1:], k=self._rng.choice(4)) |
|
else: |
|
raise ValueError(f'Bad value for {self.aug_rot90=}') |
|
|
|
|
|
for v, view in enumerate(views): |
|
if 'corres' not in view: |
|
view['corres'] = np.full((self.n_corres, 2), np.nan, dtype=np.float32) |
|
|
|
|
|
for key, val in view.items(): |
|
res, err_msg = is_good_type(key, val) |
|
assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" |
|
K = view['camera_intrinsics'] |
|
|
|
|
|
assert view['depthmap'].shape == view['img'].shape[1:] |
|
assert view['depthmap'].shape == view['pts3d'].shape[:2] |
|
assert view['depthmap'].shape == view['valid_mask'].shape |
|
|
|
|
|
for view in views: |
|
|
|
transpose_to_landscape(view) |
|
|
|
view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') |
|
|
|
return views |
|
|
|
|
|
def transpose_to_landscape(view, revert=False): |
|
height, width = view['true_shape'] |
|
|
|
if width < height: |
|
if revert: |
|
height, width = width, height |
|
|
|
|
|
assert view['img'].shape == (3, height, width) |
|
view['img'] = view['img'].swapaxes(1, 2) |
|
|
|
assert view['valid_mask'].shape == (height, width) |
|
view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) |
|
|
|
assert view['sky_mask'].shape == (height, width) |
|
view['sky_mask'] = view['sky_mask'].swapaxes(0, 1) |
|
|
|
assert view['depthmap'].shape == (height, width) |
|
view['depthmap'] = view['depthmap'].swapaxes(0, 1) |
|
|
|
assert view['pts3d'].shape == (height, width, 3) |
|
view['pts3d'] = view['pts3d'].swapaxes(0, 1) |
|
|
|
|
|
view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] |
|
|
|
|
|
view['corres'] = view['corres'][:, [1, 0]] |
|
|
|
|
|
def rotate_90(views, k=1): |
|
from scipy.spatial.transform import Rotation |
|
|
|
|
|
RT = np.eye(4, dtype=np.float32) |
|
RT[:3, :3] = Rotation.from_euler('z', 90 * k, degrees=True).as_matrix() |
|
|
|
for view in views: |
|
view['img'] = torch.rot90(view['img'], k=k, dims=(-2, -1)) |
|
view['depthmap'] = np.rot90(view['depthmap'], k=k).copy() |
|
view['camera_pose'] = view['camera_pose'] @ RT |
|
|
|
RT2 = np.eye(3, dtype=np.float32) |
|
RT2[:2, :2] = RT[:2, :2] * ((1, -1), (-1, 1)) |
|
H, W = view['depthmap'].shape |
|
if k % 4 == 0: |
|
pass |
|
elif k % 4 == 1: |
|
|
|
RT2[:2, 2] = (0, H - 1) |
|
elif k % 4 == 2: |
|
|
|
RT2[:2, 2] = (W - 1, H - 1) |
|
elif k % 4 == 3: |
|
|
|
RT2[:2, 2] = (W - 1, 0) |
|
else: |
|
raise ValueError(f'Bad value for {k=}') |
|
|
|
view['camera_intrinsics'][:2, 2] = geotrf(RT2, view['camera_intrinsics'][:2, 2]) |
|
if k % 2 == 1: |
|
K = view['camera_intrinsics'] |
|
np.fill_diagonal(K, K.diagonal()[[1, 0, 2]]) |
|
|
|
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) |
|
view['pts3d'] = pts3d |
|
view['valid_mask'] = np.rot90(view['valid_mask'], k=k).copy() |
|
view['sky_mask'] = np.rot90(view['sky_mask'], k=k).copy() |
|
|
|
view['corres'] = geotrf(RT2, view['corres']).round().astype(view['corres'].dtype) |
|
view['true_shape'] = np.int32((H, W)) |
|
|