#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo # -------------------------------------------------------- import math import gradio import os import torch import numpy as np import tempfile import functools import trimesh import copy from scipy.spatial.transform import Rotation from mast3r.cloud_opt.sparse_ga import sparse_global_alignment from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess from mast3r.model import AsymmetricMASt3R from mast3r.utils.misc import hash_md5 import mast3r.utils.path_to_dust3r # noqa from dust3r.image_pairs import make_pairs from dust3r.utils.image import load_images from dust3r.utils.device import to_numpy from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes from dust3r.demo import get_args_parser as dust3r_get_args_parser import matplotlib.pyplot as pl pl.ion() torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 batch_size = 1 def get_args_parser(): parser = dust3r_get_args_parser() parser.add_argument('--share', action='store_true') actions = parser._actions for action in actions: if action.dest == 'model_name': action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"] # change defaults parser.prog = 'mast3r demo' return parser def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, cam_color=None, as_pointcloud=False, transparent_cams=False, silent=False): assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) pts3d = to_numpy(pts3d) imgs = to_numpy(imgs) focals = to_numpy(focals) cams2world = to_numpy(cams2world) scene = trimesh.Scene() # full pointcloud if as_pointcloud: pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]) col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) scene.add_geometry(pct) else: meshes = [] for i in range(len(imgs)): meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i].reshape(imgs[i].shape), mask[i])) mesh = trimesh.Trimesh(**cat_meshes(meshes)) scene.add_geometry(mesh) # add each camera for i, pose_c2w in enumerate(cams2world): if isinstance(cam_color, list): camera_edge_color = cam_color[i] else: camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] add_scene_cam(scene, pose_c2w, camera_edge_color, None if transparent_cams else imgs[i], focals[i], imsize=imgs[i].shape[1::-1], screen_width=cam_size) rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) outfile = os.path.join(outdir, 'scene.glb') if not silent: print('(exporting 3D scene to', outfile, ')') scene.export(file_obj=outfile) return outfile def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=2, as_pointcloud=False, mask_sky=False, clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): """ extract 3D_model (glb file) from a reconstructed scene """ if scene is None: return None # get optimized values from scene rgbimg = scene.imgs focals = scene.get_focals().cpu() cams2world = scene.get_im_poses().cpu() # 3D pointcloud from depthmap, poses and intrinsics if TSDF_thresh > 0: tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh) pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth)) else: pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth)) msk = to_numpy([c > min_conf_thr for c in confs]) return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw): """ from a list of images, run mast3r inference, sparse global aligner. then run get_3D_model_from_scene """ imgs = load_images(filelist, size=image_size, verbose=not silent) if len(imgs) == 1: imgs = [imgs[0], copy.deepcopy(imgs[0])] imgs[1]['idx'] = 1 filelist = [filelist[0], filelist[0] + '_2'] scene_graph_params = [scenegraph_type] if scenegraph_type in ["swin", "logwin"]: scene_graph_params.append(str(winsize)) elif scenegraph_type == "oneref": scene_graph_params.append(str(refid)) if scenegraph_type in ["swin", "logwin"] and not win_cyclic: scene_graph_params.append('noncyclic') scene_graph = '-'.join(scene_graph_params) pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True) if optim_level == 'coarse': niter2 = 0 # Sparse GA (forward mast3r -> matching -> 3D optim -> 2D refinement -> triangulation) scene = sparse_global_alignment(filelist, pairs, os.path.join(outdir, 'cache'), model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device, opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, **kw) outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh) return scene, outfile def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type): num_files = len(inputfiles) if inputfiles is not None else 1 show_win_controls = scenegraph_type in ["swin", "logwin"] show_winsize = scenegraph_type in ["swin", "logwin"] show_cyclic = scenegraph_type in ["swin", "logwin"] max_winsize, min_winsize = 1, 1 if scenegraph_type == "swin": if win_cyclic: max_winsize = max(1, math.ceil((num_files - 1) / 2)) else: max_winsize = num_files - 1 elif scenegraph_type == "logwin": if win_cyclic: half_size = math.ceil((num_files - 1) / 2) max_winsize = max(1, math.ceil(math.log(half_size, 2))) else: max_winsize = max(1, math.ceil(math.log(num_files, 2))) winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize) win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic) win_col = gradio.Column(visible=show_win_controls) refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref') return win_col, winsize, win_cyclic, refid def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False, share=False): if not silent: print('Outputing stuff in', tmpdirname) recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size) model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="MASt3R Demo") as demo: # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference scene = gradio.State(None) gradio.HTML('

MASt3R Demo

') with gradio.Column(): inputfiles = gradio.File(file_count="multiple") with gradio.Row(): lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, label="num_iterations", info="For coarse alignment!") lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, label="num_iterations", info="For refinement!") optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], value='refine', label="OptLevel", info="Optimization level") shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", info="Only optimize one set of intrinsics for all views") scenegraph_type = gradio.Dropdown(["complete", "swin", "logwin", "oneref"], value='complete', label="Scenegraph", info="Define how to make pairs", interactive=True) with gradio.Column(visible=False) as win_col: winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, minimum=1, maximum=1, step=1) win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) run_btn = gradio.Button("Run") with gradio.Row(): # adjust the confidence threshold min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) # adjust the camera size in the output pointcloud cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) with gradio.Row(): as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") # two post process implemented mask_sky = gradio.Checkbox(value=False, label="Mask sky") clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") outmodel = gradio.Model3D() # events scenegraph_type.change(set_scenegraph_options, inputs=[inputfiles, win_cyclic, refid, scenegraph_type], outputs=[win_col, winsize, win_cyclic, refid]) inputfiles.change(set_scenegraph_options, inputs=[inputfiles, win_cyclic, refid, scenegraph_type], outputs=[win_col, winsize, win_cyclic, refid]) win_cyclic.change(set_scenegraph_options, inputs=[inputfiles, win_cyclic, refid, scenegraph_type], outputs=[win_col, winsize, win_cyclic, refid]) run_btn.click(fn=recon_fun, inputs=[inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], outputs=[scene, outmodel]) min_conf_thr.release(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) cam_size.change(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) TSDF_thresh.change(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) as_pointcloud.change(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) mask_sky.change(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) clean_depth.change(fn=model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) transparent_cams.change(model_from_scene_fun, inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, TSDF_thresh], outputs=outmodel) demo.launch(share=False, server_name=server_name, server_port=server_port) if __name__ == '__main__': parser = get_args_parser() args = parser.parse_args() if args.server_name is not None: server_name = args.server_name else: server_name = '0.0.0.0' if args.local_network else '127.0.0.1' if args.weights is not None: weights_path = args.weights else: weights_path = "naver/" + args.model_name model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device) chkpt_tag = hash_md5(weights_path) # mast3r will write the 3D model inside tmpdirname/chkpt_tag if args.tmp_dir is not None: tmpdirname = args.tmp_dir cache_path = os.path.join(tmpdirname, chkpt_tag) os.makedirs(cache_path, exist_ok=True) main_demo(cache_path, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent, share=args.share) else: with tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') as tmpdirname: cache_path = os.path.join(tmpdirname, chkpt_tag) os.makedirs(cache_path, exist_ok=True) main_demo(tmpdirname, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent, share=args.share)