#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- import os import torch import tempfile from contextlib import nullcontext from mast3r.demo import get_args_parser, main_demo from mast3r.model import AsymmetricMASt3R from mast3r.utils.misc import hash_md5 import matplotlib.pyplot as pl pl.ion() torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 if __name__ == '__main__': parser = get_args_parser() args = parser.parse_args() # Set default values for required arguments if args.weights is None and args.model_name is None: args.model_name = 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' # Provide a default model_name or set weights if args.server_name is not None: server_name = args.server_name else: server_name = '0.0.0.0' if args.local_network else '127.0.0.1' if args.weights is not None: weights_path = args.weights else: weights_path = "naver/" + args.model_name model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device) chkpt_tag = hash_md5(weights_path) def get_context(tmp_dir): return tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') if tmp_dir is None \ else nullcontext(tmp_dir) with get_context(args.tmp_dir) as tmpdirname: cache_path = os.path.join(tmpdirname, chkpt_tag) os.makedirs(cache_path, exist_ok=True) main_demo(cache_path, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent, share=args.share, gradio_delete_cache=args.gradio_delete_cache)