Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import matplotlib | |
import numpy as np | |
import os | |
import torch | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Depth Anything V2') | |
parser.add_argument('--video-path', type=str) | |
parser.add_argument('--input-size', type=int, default=518) | |
parser.add_argument('--outdir', type=str, default='./vis_video_depth') | |
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) | |
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction') | |
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette') | |
args = parser.parse_args() | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' | |
# 'we are undergoing company review procedures to release Depth-Anything-Giant checkpoint | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
depth_anything = DepthAnythingV2(**model_configs[args.encoder]) | |
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu')) | |
depth_anything = depth_anything.to(DEVICE).eval() | |
if os.path.isfile(args.video_path): | |
if args.video_path.endswith('txt'): | |
with open(args.video_path, 'r') as f: | |
lines = f.read().splitlines() | |
else: | |
filenames = [args.video_path] | |
else: | |
filenames = glob.glob(os.path.join(args.video_path, '**/*'), recursive=True) | |
os.makedirs(args.outdir, exist_ok=True) | |
margin_width = 50 | |
cmap = matplotlib.colormaps.get_cmap('Spectral_r') | |
for k, filename in enumerate(filenames): | |
print(f'Progress {k+1}/{len(filenames)}: {filename}') | |
raw_video = cv2.VideoCapture(filename) | |
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) | |
output_width = frame_width * 2 + margin_width | |
if args.pred_only: | |
output_width = frame_width | |
else: | |
output_width = frame_width * 2 + margin_width | |
output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.mp4') | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) | |
while raw_video.isOpened(): | |
ret, raw_frame = raw_video.read() | |
if not ret: | |
break | |
depth = depth_anything.infer_image(raw_frame, args.input_size) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.astype(np.uint8) | |
if args.grayscale: | |
depth = np.repeat(depth[..., np.newaxis], 3, axis=-1) | |
else: | |
depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8) | |
if args.pred_only: | |
out.write(depth) | |
else: | |
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 | |
combined_frame = cv2.hconcat([raw_frame, split_region, depth]) | |
out.write(combined_frame) | |
raw_video.release() | |
out.release() | |