LiheYoung commited on
Commit
2680cbd
·
verified ·
1 Parent(s): 9829def

Add Github repository content

Browse files
Files changed (32) hide show
  1. .gitattributes +2 -0
  2. metric_depth/README.md +55 -0
  3. metric_depth/assets/compare_zoedepth.png +3 -0
  4. metric_depth/dataset/hypersim.py +74 -0
  5. metric_depth/dataset/kitti.py +57 -0
  6. metric_depth/dataset/splits/hypersim/train.txt +3 -0
  7. metric_depth/dataset/splits/hypersim/val.txt +0 -0
  8. metric_depth/dataset/splits/kitti/val.txt +0 -0
  9. metric_depth/dataset/splits/vkitti2/train.txt +0 -0
  10. metric_depth/dataset/transform.py +277 -0
  11. metric_depth/dataset/vkitti2.py +54 -0
  12. metric_depth/depth_anything_v2/dinov2.py +415 -0
  13. metric_depth/depth_anything_v2/dinov2_layers/__init__.py +11 -0
  14. metric_depth/depth_anything_v2/dinov2_layers/attention.py +83 -0
  15. metric_depth/depth_anything_v2/dinov2_layers/block.py +252 -0
  16. metric_depth/depth_anything_v2/dinov2_layers/drop_path.py +35 -0
  17. metric_depth/depth_anything_v2/dinov2_layers/layer_scale.py +28 -0
  18. metric_depth/depth_anything_v2/dinov2_layers/mlp.py +41 -0
  19. metric_depth/depth_anything_v2/dinov2_layers/patch_embed.py +89 -0
  20. metric_depth/depth_anything_v2/dinov2_layers/swiglu_ffn.py +63 -0
  21. metric_depth/depth_anything_v2/dpt.py +222 -0
  22. metric_depth/depth_anything_v2/util/blocks.py +148 -0
  23. metric_depth/depth_anything_v2/util/transform.py +158 -0
  24. metric_depth/depth_to_pointcloud.py +83 -0
  25. metric_depth/dist_train.sh +26 -0
  26. metric_depth/requirements.txt +5 -0
  27. metric_depth/run.py +81 -0
  28. metric_depth/train.py +212 -0
  29. metric_depth/util/dist_helper.py +41 -0
  30. metric_depth/util/loss.py +16 -0
  31. metric_depth/util/metric.py +26 -0
  32. metric_depth/util/utils.py +26 -0
.gitattributes CHANGED
@@ -39,3 +39,5 @@ assets/examples_video/basketball.mp4 filter=lfs diff=lfs merge=lfs -text
39
  assets/examples_video/ferris_wheel.mp4 filter=lfs diff=lfs merge=lfs -text
40
  assets/examples/demo19.jpg filter=lfs diff=lfs merge=lfs -text
41
  assets/teaser.png filter=lfs diff=lfs merge=lfs -text
 
 
 
39
  assets/examples_video/ferris_wheel.mp4 filter=lfs diff=lfs merge=lfs -text
40
  assets/examples/demo19.jpg filter=lfs diff=lfs merge=lfs -text
41
  assets/teaser.png filter=lfs diff=lfs merge=lfs -text
42
+ metric_depth/assets/compare_zoedepth.png filter=lfs diff=lfs merge=lfs -text
43
+ metric_depth/dataset/splits/hypersim/train.txt filter=lfs diff=lfs merge=lfs -text
metric_depth/README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Depth Anything V2 for Metric Depth Estimation
2
+
3
+ ![teaser](./assets/compare_zoedepth.png)
4
+
5
+ We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively.
6
+
7
+
8
+ ## Usage
9
+
10
+ ### Inference
11
+
12
+ Please first download our pre-trained metric depth models and put them under the `checkpoints` directory:
13
+ - [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true)
14
+ - [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true)
15
+
16
+ ```bash
17
+ # indoor scenes
18
+ python run.py \
19
+ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
20
+ --max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
21
+
22
+ # outdoor scenes
23
+ python run.py \
24
+ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
25
+ --max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
26
+ ```
27
+
28
+ You can also project 2D images to point clouds:
29
+ ```bash
30
+ python depth_to_pointcloud.py \
31
+ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
32
+ --max-depth 20 --img-path <path> --outdir <outdir>
33
+ ```
34
+
35
+ ### Reproduce training
36
+
37
+ Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then:
38
+
39
+ ```bash
40
+ bash dist_train.sh
41
+ ```
42
+
43
+
44
+ ## Citation
45
+
46
+ If you find this project useful, please consider citing:
47
+
48
+ ```bibtex
49
+ @article{depth_anything_v2,
50
+ title={Depth Anything V2},
51
+ author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
52
+ journal={arXiv:2406.09414},
53
+ year={2024}
54
+ }
55
+ ```
metric_depth/assets/compare_zoedepth.png ADDED

Git LFS Details

  • SHA256: 8044e39ef6cb4aaabea9a81333fa1ff2d3e07448e7f9f43f77f471aba72a12e0
  • Pointer size: 132 Bytes
  • Size of remote file: 9.19 MB
metric_depth/dataset/hypersim.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import h5py
3
+ import numpy as np
4
+ import torch
5
+ from torch.utils.data import Dataset
6
+ from torchvision.transforms import Compose
7
+
8
+ from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop
9
+
10
+
11
+ def hypersim_distance_to_depth(npyDistance):
12
+ intWidth, intHeight, fltFocal = 1024, 768, 886.81
13
+
14
+ npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
15
+ 1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
16
+ npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
17
+ intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
18
+ npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
19
+ npyImageplane = np.concatenate(
20
+ [npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)
21
+
22
+ npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
23
+ return npyDepth
24
+
25
+
26
+ class Hypersim(Dataset):
27
+ def __init__(self, filelist_path, mode, size=(518, 518)):
28
+
29
+ self.mode = mode
30
+ self.size = size
31
+
32
+ with open(filelist_path, 'r') as f:
33
+ self.filelist = f.read().splitlines()
34
+
35
+ net_w, net_h = size
36
+ self.transform = Compose([
37
+ Resize(
38
+ width=net_w,
39
+ height=net_h,
40
+ resize_target=True if mode == 'train' else False,
41
+ keep_aspect_ratio=True,
42
+ ensure_multiple_of=14,
43
+ resize_method='lower_bound',
44
+ image_interpolation_method=cv2.INTER_CUBIC,
45
+ ),
46
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
47
+ PrepareForNet(),
48
+ ] + ([Crop(size[0])] if self.mode == 'train' else []))
49
+
50
+ def __getitem__(self, item):
51
+ img_path = self.filelist[item].split(' ')[0]
52
+ depth_path = self.filelist[item].split(' ')[1]
53
+
54
+ image = cv2.imread(img_path)
55
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
56
+
57
+ depth_fd = h5py.File(depth_path, "r")
58
+ distance_meters = np.array(depth_fd['dataset'])
59
+ depth = hypersim_distance_to_depth(distance_meters)
60
+
61
+ sample = self.transform({'image': image, 'depth': depth})
62
+
63
+ sample['image'] = torch.from_numpy(sample['image'])
64
+ sample['depth'] = torch.from_numpy(sample['depth'])
65
+
66
+ sample['valid_mask'] = (torch.isnan(sample['depth']) == 0)
67
+ sample['depth'][sample['valid_mask'] == 0] = 0
68
+
69
+ sample['image_path'] = self.filelist[item].split(' ')[0]
70
+
71
+ return sample
72
+
73
+ def __len__(self):
74
+ return len(self.filelist)
metric_depth/dataset/kitti.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+ from torchvision.transforms import Compose
5
+
6
+ from dataset.transform import Resize, NormalizeImage, PrepareForNet
7
+
8
+
9
+ class KITTI(Dataset):
10
+ def __init__(self, filelist_path, mode, size=(518, 518)):
11
+ if mode != 'val':
12
+ raise NotImplementedError
13
+
14
+ self.mode = mode
15
+ self.size = size
16
+
17
+ with open(filelist_path, 'r') as f:
18
+ self.filelist = f.read().splitlines()
19
+
20
+ net_w, net_h = size
21
+ self.transform = Compose([
22
+ Resize(
23
+ width=net_w,
24
+ height=net_h,
25
+ resize_target=True if mode == 'train' else False,
26
+ keep_aspect_ratio=True,
27
+ ensure_multiple_of=14,
28
+ resize_method='lower_bound',
29
+ image_interpolation_method=cv2.INTER_CUBIC,
30
+ ),
31
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
32
+ PrepareForNet(),
33
+ ])
34
+
35
+ def __getitem__(self, item):
36
+ img_path = self.filelist[item].split(' ')[0]
37
+ depth_path = self.filelist[item].split(' ')[1]
38
+
39
+ image = cv2.imread(img_path)
40
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
41
+
42
+ depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED).astype('float32')
43
+
44
+ sample = self.transform({'image': image, 'depth': depth})
45
+
46
+ sample['image'] = torch.from_numpy(sample['image'])
47
+ sample['depth'] = torch.from_numpy(sample['depth'])
48
+ sample['depth'] = sample['depth'] / 256.0 # convert in meters
49
+
50
+ sample['valid_mask'] = sample['depth'] > 0
51
+
52
+ sample['image_path'] = self.filelist[item].split(' ')[0]
53
+
54
+ return sample
55
+
56
+ def __len__(self):
57
+ return len(self.filelist)
metric_depth/dataset/splits/hypersim/train.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47beb7c615a54d08dfa2f053787897455e845ad1b54d268194a6b431b01a04d0
3
+ size 13694890
metric_depth/dataset/splits/hypersim/val.txt ADDED
The diff for this file is too large to render. See raw diff
 
metric_depth/dataset/splits/kitti/val.txt ADDED
The diff for this file is too large to render. See raw diff
 
metric_depth/dataset/splits/vkitti2/train.txt ADDED
The diff for this file is too large to render. See raw diff
 
metric_depth/dataset/transform.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+
8
+ def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
9
+ """Rezise the sample to ensure the given size. Keeps aspect ratio.
10
+
11
+ Args:
12
+ sample (dict): sample
13
+ size (tuple): image size
14
+
15
+ Returns:
16
+ tuple: new size
17
+ """
18
+ shape = list(sample["disparity"].shape)
19
+
20
+ if shape[0] >= size[0] and shape[1] >= size[1]:
21
+ return sample
22
+
23
+ scale = [0, 0]
24
+ scale[0] = size[0] / shape[0]
25
+ scale[1] = size[1] / shape[1]
26
+
27
+ scale = max(scale)
28
+
29
+ shape[0] = math.ceil(scale * shape[0])
30
+ shape[1] = math.ceil(scale * shape[1])
31
+
32
+ # resize
33
+ sample["image"] = cv2.resize(
34
+ sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
35
+ )
36
+
37
+ sample["disparity"] = cv2.resize(
38
+ sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
39
+ )
40
+ sample["mask"] = cv2.resize(
41
+ sample["mask"].astype(np.float32),
42
+ tuple(shape[::-1]),
43
+ interpolation=cv2.INTER_NEAREST,
44
+ )
45
+ sample["mask"] = sample["mask"].astype(bool)
46
+
47
+ return tuple(shape)
48
+
49
+
50
+ class Resize(object):
51
+ """Resize sample to given size (width, height).
52
+ """
53
+
54
+ def __init__(
55
+ self,
56
+ width,
57
+ height,
58
+ resize_target=True,
59
+ keep_aspect_ratio=False,
60
+ ensure_multiple_of=1,
61
+ resize_method="lower_bound",
62
+ image_interpolation_method=cv2.INTER_AREA,
63
+ ):
64
+ """Init.
65
+
66
+ Args:
67
+ width (int): desired output width
68
+ height (int): desired output height
69
+ resize_target (bool, optional):
70
+ True: Resize the full sample (image, mask, target).
71
+ False: Resize image only.
72
+ Defaults to True.
73
+ keep_aspect_ratio (bool, optional):
74
+ True: Keep the aspect ratio of the input sample.
75
+ Output sample might not have the given width and height, and
76
+ resize behaviour depends on the parameter 'resize_method'.
77
+ Defaults to False.
78
+ ensure_multiple_of (int, optional):
79
+ Output width and height is constrained to be multiple of this parameter.
80
+ Defaults to 1.
81
+ resize_method (str, optional):
82
+ "lower_bound": Output will be at least as large as the given size.
83
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
84
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
85
+ Defaults to "lower_bound".
86
+ """
87
+ self.__width = width
88
+ self.__height = height
89
+
90
+ self.__resize_target = resize_target
91
+ self.__keep_aspect_ratio = keep_aspect_ratio
92
+ self.__multiple_of = ensure_multiple_of
93
+ self.__resize_method = resize_method
94
+ self.__image_interpolation_method = image_interpolation_method
95
+
96
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
97
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
98
+
99
+ if max_val is not None and y > max_val:
100
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
101
+
102
+ if y < min_val:
103
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
104
+
105
+ return y
106
+
107
+ def get_size(self, width, height):
108
+ # determine new height and width
109
+ scale_height = self.__height / height
110
+ scale_width = self.__width / width
111
+
112
+ if self.__keep_aspect_ratio:
113
+ if self.__resize_method == "lower_bound":
114
+ # scale such that output size is lower bound
115
+ if scale_width > scale_height:
116
+ # fit width
117
+ scale_height = scale_width
118
+ else:
119
+ # fit height
120
+ scale_width = scale_height
121
+ elif self.__resize_method == "upper_bound":
122
+ # scale such that output size is upper bound
123
+ if scale_width < scale_height:
124
+ # fit width
125
+ scale_height = scale_width
126
+ else:
127
+ # fit height
128
+ scale_width = scale_height
129
+ elif self.__resize_method == "minimal":
130
+ # scale as least as possbile
131
+ if abs(1 - scale_width) < abs(1 - scale_height):
132
+ # fit width
133
+ scale_height = scale_width
134
+ else:
135
+ # fit height
136
+ scale_width = scale_height
137
+ else:
138
+ raise ValueError(
139
+ f"resize_method {self.__resize_method} not implemented"
140
+ )
141
+
142
+ if self.__resize_method == "lower_bound":
143
+ new_height = self.constrain_to_multiple_of(
144
+ scale_height * height, min_val=self.__height
145
+ )
146
+ new_width = self.constrain_to_multiple_of(
147
+ scale_width * width, min_val=self.__width
148
+ )
149
+ elif self.__resize_method == "upper_bound":
150
+ new_height = self.constrain_to_multiple_of(
151
+ scale_height * height, max_val=self.__height
152
+ )
153
+ new_width = self.constrain_to_multiple_of(
154
+ scale_width * width, max_val=self.__width
155
+ )
156
+ elif self.__resize_method == "minimal":
157
+ new_height = self.constrain_to_multiple_of(scale_height * height)
158
+ new_width = self.constrain_to_multiple_of(scale_width * width)
159
+ else:
160
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
161
+
162
+ return (new_width, new_height)
163
+
164
+ def __call__(self, sample):
165
+ width, height = self.get_size(
166
+ sample["image"].shape[1], sample["image"].shape[0]
167
+ )
168
+
169
+ # resize sample
170
+ sample["image"] = cv2.resize(
171
+ sample["image"],
172
+ (width, height),
173
+ interpolation=self.__image_interpolation_method,
174
+ )
175
+
176
+ if self.__resize_target:
177
+ if "disparity" in sample:
178
+ sample["disparity"] = cv2.resize(
179
+ sample["disparity"],
180
+ (width, height),
181
+ interpolation=cv2.INTER_NEAREST,
182
+ )
183
+
184
+ if "depth" in sample:
185
+ sample["depth"] = cv2.resize(
186
+ sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
187
+ )
188
+
189
+ if "semseg_mask" in sample:
190
+ # sample["semseg_mask"] = cv2.resize(
191
+ # sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
192
+ # )
193
+ sample["semseg_mask"] = F.interpolate(torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode='nearest').numpy()[0, 0]
194
+
195
+ if "mask" in sample:
196
+ sample["mask"] = cv2.resize(
197
+ sample["mask"].astype(np.float32),
198
+ (width, height),
199
+ interpolation=cv2.INTER_NEAREST,
200
+ )
201
+ # sample["mask"] = sample["mask"].astype(bool)
202
+
203
+ # print(sample['image'].shape, sample['depth'].shape)
204
+ return sample
205
+
206
+
207
+ class NormalizeImage(object):
208
+ """Normlize image by given mean and std.
209
+ """
210
+
211
+ def __init__(self, mean, std):
212
+ self.__mean = mean
213
+ self.__std = std
214
+
215
+ def __call__(self, sample):
216
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
217
+
218
+ return sample
219
+
220
+
221
+ class PrepareForNet(object):
222
+ """Prepare sample for usage as network input.
223
+ """
224
+
225
+ def __init__(self):
226
+ pass
227
+
228
+ def __call__(self, sample):
229
+ image = np.transpose(sample["image"], (2, 0, 1))
230
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
231
+
232
+ if "mask" in sample:
233
+ sample["mask"] = sample["mask"].astype(np.float32)
234
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
235
+
236
+ if "depth" in sample:
237
+ depth = sample["depth"].astype(np.float32)
238
+ sample["depth"] = np.ascontiguousarray(depth)
239
+
240
+ if "semseg_mask" in sample:
241
+ sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
242
+ sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
243
+
244
+ return sample
245
+
246
+
247
+ class Crop(object):
248
+ """Crop sample for batch-wise training. Image is of shape CxHxW
249
+ """
250
+
251
+ def __init__(self, size):
252
+ if isinstance(size, int):
253
+ self.size = (size, size)
254
+ else:
255
+ self.size = size
256
+
257
+ def __call__(self, sample):
258
+ h, w = sample['image'].shape[-2:]
259
+ assert h >= self.size[0] and w >= self.size[1], 'Wrong size'
260
+
261
+ h_start = np.random.randint(0, h - self.size[0] + 1)
262
+ w_start = np.random.randint(0, w - self.size[1] + 1)
263
+ h_end = h_start + self.size[0]
264
+ w_end = w_start + self.size[1]
265
+
266
+ sample['image'] = sample['image'][:, h_start: h_end, w_start: w_end]
267
+
268
+ if "depth" in sample:
269
+ sample["depth"] = sample["depth"][h_start: h_end, w_start: w_end]
270
+
271
+ if "mask" in sample:
272
+ sample["mask"] = sample["mask"][h_start: h_end, w_start: w_end]
273
+
274
+ if "semseg_mask" in sample:
275
+ sample["semseg_mask"] = sample["semseg_mask"][h_start: h_end, w_start: w_end]
276
+
277
+ return sample
metric_depth/dataset/vkitti2.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+ from torchvision.transforms import Compose
5
+
6
+ from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop
7
+
8
+
9
+ class VKITTI2(Dataset):
10
+ def __init__(self, filelist_path, mode, size=(518, 518)):
11
+
12
+ self.mode = mode
13
+ self.size = size
14
+
15
+ with open(filelist_path, 'r') as f:
16
+ self.filelist = f.read().splitlines()
17
+
18
+ net_w, net_h = size
19
+ self.transform = Compose([
20
+ Resize(
21
+ width=net_w,
22
+ height=net_h,
23
+ resize_target=True if mode == 'train' else False,
24
+ keep_aspect_ratio=True,
25
+ ensure_multiple_of=14,
26
+ resize_method='lower_bound',
27
+ image_interpolation_method=cv2.INTER_CUBIC,
28
+ ),
29
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
30
+ PrepareForNet(),
31
+ ] + ([Crop(size[0])] if self.mode == 'train' else []))
32
+
33
+ def __getitem__(self, item):
34
+ img_path = self.filelist[item].split(' ')[0]
35
+ depth_path = self.filelist[item].split(' ')[1]
36
+
37
+ image = cv2.imread(img_path)
38
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
39
+
40
+ depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100.0 # cm to m
41
+
42
+ sample = self.transform({'image': image, 'depth': depth})
43
+
44
+ sample['image'] = torch.from_numpy(sample['image'])
45
+ sample['depth'] = torch.from_numpy(sample['depth'])
46
+
47
+ sample['valid_mask'] = (sample['depth'] <= 80)
48
+
49
+ sample['image_path'] = self.filelist[item].split(' ')[0]
50
+
51
+ return sample
52
+
53
+ def __len__(self):
54
+ return len(self.filelist)
metric_depth/depth_anything_v2/dinov2.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ # References:
7
+ # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
8
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
9
+
10
+ from functools import partial
11
+ import math
12
+ import logging
13
+ from typing import Sequence, Tuple, Union, Callable
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.utils.checkpoint
18
+ from torch.nn.init import trunc_normal_
19
+
20
+ from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
27
+ if not depth_first and include_root:
28
+ fn(module=module, name=name)
29
+ for child_name, child_module in module.named_children():
30
+ child_name = ".".join((name, child_name)) if name else child_name
31
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
32
+ if depth_first and include_root:
33
+ fn(module=module, name=name)
34
+ return module
35
+
36
+
37
+ class BlockChunk(nn.ModuleList):
38
+ def forward(self, x):
39
+ for b in self:
40
+ x = b(x)
41
+ return x
42
+
43
+
44
+ class DinoVisionTransformer(nn.Module):
45
+ def __init__(
46
+ self,
47
+ img_size=224,
48
+ patch_size=16,
49
+ in_chans=3,
50
+ embed_dim=768,
51
+ depth=12,
52
+ num_heads=12,
53
+ mlp_ratio=4.0,
54
+ qkv_bias=True,
55
+ ffn_bias=True,
56
+ proj_bias=True,
57
+ drop_path_rate=0.0,
58
+ drop_path_uniform=False,
59
+ init_values=None, # for layerscale: None or 0 => no layerscale
60
+ embed_layer=PatchEmbed,
61
+ act_layer=nn.GELU,
62
+ block_fn=Block,
63
+ ffn_layer="mlp",
64
+ block_chunks=1,
65
+ num_register_tokens=0,
66
+ interpolate_antialias=False,
67
+ interpolate_offset=0.1,
68
+ ):
69
+ """
70
+ Args:
71
+ img_size (int, tuple): input image size
72
+ patch_size (int, tuple): patch size
73
+ in_chans (int): number of input channels
74
+ embed_dim (int): embedding dimension
75
+ depth (int): depth of transformer
76
+ num_heads (int): number of attention heads
77
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
78
+ qkv_bias (bool): enable bias for qkv if True
79
+ proj_bias (bool): enable bias for proj in attn if True
80
+ ffn_bias (bool): enable bias for ffn if True
81
+ drop_path_rate (float): stochastic depth rate
82
+ drop_path_uniform (bool): apply uniform drop rate across blocks
83
+ weight_init (str): weight init scheme
84
+ init_values (float): layer-scale init values
85
+ embed_layer (nn.Module): patch embedding layer
86
+ act_layer (nn.Module): MLP activation layer
87
+ block_fn (nn.Module): transformer block class
88
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
89
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
90
+ num_register_tokens: (int) number of extra cls tokens (so-called "registers")
91
+ interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
92
+ interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
93
+ """
94
+ super().__init__()
95
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
96
+
97
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
98
+ self.num_tokens = 1
99
+ self.n_blocks = depth
100
+ self.num_heads = num_heads
101
+ self.patch_size = patch_size
102
+ self.num_register_tokens = num_register_tokens
103
+ self.interpolate_antialias = interpolate_antialias
104
+ self.interpolate_offset = interpolate_offset
105
+
106
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
107
+ num_patches = self.patch_embed.num_patches
108
+
109
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
110
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
111
+ assert num_register_tokens >= 0
112
+ self.register_tokens = (
113
+ nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
114
+ )
115
+
116
+ if drop_path_uniform is True:
117
+ dpr = [drop_path_rate] * depth
118
+ else:
119
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
120
+
121
+ if ffn_layer == "mlp":
122
+ logger.info("using MLP layer as FFN")
123
+ ffn_layer = Mlp
124
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
125
+ logger.info("using SwiGLU layer as FFN")
126
+ ffn_layer = SwiGLUFFNFused
127
+ elif ffn_layer == "identity":
128
+ logger.info("using Identity layer as FFN")
129
+
130
+ def f(*args, **kwargs):
131
+ return nn.Identity()
132
+
133
+ ffn_layer = f
134
+ else:
135
+ raise NotImplementedError
136
+
137
+ blocks_list = [
138
+ block_fn(
139
+ dim=embed_dim,
140
+ num_heads=num_heads,
141
+ mlp_ratio=mlp_ratio,
142
+ qkv_bias=qkv_bias,
143
+ proj_bias=proj_bias,
144
+ ffn_bias=ffn_bias,
145
+ drop_path=dpr[i],
146
+ norm_layer=norm_layer,
147
+ act_layer=act_layer,
148
+ ffn_layer=ffn_layer,
149
+ init_values=init_values,
150
+ )
151
+ for i in range(depth)
152
+ ]
153
+ if block_chunks > 0:
154
+ self.chunked_blocks = True
155
+ chunked_blocks = []
156
+ chunksize = depth // block_chunks
157
+ for i in range(0, depth, chunksize):
158
+ # this is to keep the block index consistent if we chunk the block list
159
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
160
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
161
+ else:
162
+ self.chunked_blocks = False
163
+ self.blocks = nn.ModuleList(blocks_list)
164
+
165
+ self.norm = norm_layer(embed_dim)
166
+ self.head = nn.Identity()
167
+
168
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
169
+
170
+ self.init_weights()
171
+
172
+ def init_weights(self):
173
+ trunc_normal_(self.pos_embed, std=0.02)
174
+ nn.init.normal_(self.cls_token, std=1e-6)
175
+ if self.register_tokens is not None:
176
+ nn.init.normal_(self.register_tokens, std=1e-6)
177
+ named_apply(init_weights_vit_timm, self)
178
+
179
+ def interpolate_pos_encoding(self, x, w, h):
180
+ previous_dtype = x.dtype
181
+ npatch = x.shape[1] - 1
182
+ N = self.pos_embed.shape[1] - 1
183
+ if npatch == N and w == h:
184
+ return self.pos_embed
185
+ pos_embed = self.pos_embed.float()
186
+ class_pos_embed = pos_embed[:, 0]
187
+ patch_pos_embed = pos_embed[:, 1:]
188
+ dim = x.shape[-1]
189
+ w0 = w // self.patch_size
190
+ h0 = h // self.patch_size
191
+ # we add a small number to avoid floating point error in the interpolation
192
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
193
+ # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
194
+ w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
195
+ # w0, h0 = w0 + 0.1, h0 + 0.1
196
+
197
+ sqrt_N = math.sqrt(N)
198
+ sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
199
+ patch_pos_embed = nn.functional.interpolate(
200
+ patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
201
+ scale_factor=(sx, sy),
202
+ # (int(w0), int(h0)), # to solve the upsampling shape issue
203
+ mode="bicubic",
204
+ antialias=self.interpolate_antialias
205
+ )
206
+
207
+ assert int(w0) == patch_pos_embed.shape[-2]
208
+ assert int(h0) == patch_pos_embed.shape[-1]
209
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
210
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
211
+
212
+ def prepare_tokens_with_masks(self, x, masks=None):
213
+ B, nc, w, h = x.shape
214
+ x = self.patch_embed(x)
215
+ if masks is not None:
216
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
217
+
218
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
219
+ x = x + self.interpolate_pos_encoding(x, w, h)
220
+
221
+ if self.register_tokens is not None:
222
+ x = torch.cat(
223
+ (
224
+ x[:, :1],
225
+ self.register_tokens.expand(x.shape[0], -1, -1),
226
+ x[:, 1:],
227
+ ),
228
+ dim=1,
229
+ )
230
+
231
+ return x
232
+
233
+ def forward_features_list(self, x_list, masks_list):
234
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
235
+ for blk in self.blocks:
236
+ x = blk(x)
237
+
238
+ all_x = x
239
+ output = []
240
+ for x, masks in zip(all_x, masks_list):
241
+ x_norm = self.norm(x)
242
+ output.append(
243
+ {
244
+ "x_norm_clstoken": x_norm[:, 0],
245
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
246
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
247
+ "x_prenorm": x,
248
+ "masks": masks,
249
+ }
250
+ )
251
+ return output
252
+
253
+ def forward_features(self, x, masks=None):
254
+ if isinstance(x, list):
255
+ return self.forward_features_list(x, masks)
256
+
257
+ x = self.prepare_tokens_with_masks(x, masks)
258
+
259
+ for blk in self.blocks:
260
+ x = blk(x)
261
+
262
+ x_norm = self.norm(x)
263
+ return {
264
+ "x_norm_clstoken": x_norm[:, 0],
265
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
266
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
267
+ "x_prenorm": x,
268
+ "masks": masks,
269
+ }
270
+
271
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
272
+ x = self.prepare_tokens_with_masks(x)
273
+ # If n is an int, take the n last blocks. If it's a list, take them
274
+ output, total_block_len = [], len(self.blocks)
275
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
276
+ for i, blk in enumerate(self.blocks):
277
+ x = blk(x)
278
+ if i in blocks_to_take:
279
+ output.append(x)
280
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
281
+ return output
282
+
283
+ def _get_intermediate_layers_chunked(self, x, n=1):
284
+ x = self.prepare_tokens_with_masks(x)
285
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
286
+ # If n is an int, take the n last blocks. If it's a list, take them
287
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
288
+ for block_chunk in self.blocks:
289
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
290
+ x = blk(x)
291
+ if i in blocks_to_take:
292
+ output.append(x)
293
+ i += 1
294
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
295
+ return output
296
+
297
+ def get_intermediate_layers(
298
+ self,
299
+ x: torch.Tensor,
300
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
301
+ reshape: bool = False,
302
+ return_class_token: bool = False,
303
+ norm=True
304
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
305
+ if self.chunked_blocks:
306
+ outputs = self._get_intermediate_layers_chunked(x, n)
307
+ else:
308
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
309
+ if norm:
310
+ outputs = [self.norm(out) for out in outputs]
311
+ class_tokens = [out[:, 0] for out in outputs]
312
+ outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
313
+ if reshape:
314
+ B, _, w, h = x.shape
315
+ outputs = [
316
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
317
+ for out in outputs
318
+ ]
319
+ if return_class_token:
320
+ return tuple(zip(outputs, class_tokens))
321
+ return tuple(outputs)
322
+
323
+ def forward(self, *args, is_training=False, **kwargs):
324
+ ret = self.forward_features(*args, **kwargs)
325
+ if is_training:
326
+ return ret
327
+ else:
328
+ return self.head(ret["x_norm_clstoken"])
329
+
330
+
331
+ def init_weights_vit_timm(module: nn.Module, name: str = ""):
332
+ """ViT weight initialization, original timm impl (for reproducibility)"""
333
+ if isinstance(module, nn.Linear):
334
+ trunc_normal_(module.weight, std=0.02)
335
+ if module.bias is not None:
336
+ nn.init.zeros_(module.bias)
337
+
338
+
339
+ def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
340
+ model = DinoVisionTransformer(
341
+ patch_size=patch_size,
342
+ embed_dim=384,
343
+ depth=12,
344
+ num_heads=6,
345
+ mlp_ratio=4,
346
+ block_fn=partial(Block, attn_class=MemEffAttention),
347
+ num_register_tokens=num_register_tokens,
348
+ **kwargs,
349
+ )
350
+ return model
351
+
352
+
353
+ def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
354
+ model = DinoVisionTransformer(
355
+ patch_size=patch_size,
356
+ embed_dim=768,
357
+ depth=12,
358
+ num_heads=12,
359
+ mlp_ratio=4,
360
+ block_fn=partial(Block, attn_class=MemEffAttention),
361
+ num_register_tokens=num_register_tokens,
362
+ **kwargs,
363
+ )
364
+ return model
365
+
366
+
367
+ def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
368
+ model = DinoVisionTransformer(
369
+ patch_size=patch_size,
370
+ embed_dim=1024,
371
+ depth=24,
372
+ num_heads=16,
373
+ mlp_ratio=4,
374
+ block_fn=partial(Block, attn_class=MemEffAttention),
375
+ num_register_tokens=num_register_tokens,
376
+ **kwargs,
377
+ )
378
+ return model
379
+
380
+
381
+ def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
382
+ """
383
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
384
+ """
385
+ model = DinoVisionTransformer(
386
+ patch_size=patch_size,
387
+ embed_dim=1536,
388
+ depth=40,
389
+ num_heads=24,
390
+ mlp_ratio=4,
391
+ block_fn=partial(Block, attn_class=MemEffAttention),
392
+ num_register_tokens=num_register_tokens,
393
+ **kwargs,
394
+ )
395
+ return model
396
+
397
+
398
+ def DINOv2(model_name):
399
+ model_zoo = {
400
+ "vits": vit_small,
401
+ "vitb": vit_base,
402
+ "vitl": vit_large,
403
+ "vitg": vit_giant2
404
+ }
405
+
406
+ return model_zoo[model_name](
407
+ img_size=518,
408
+ patch_size=14,
409
+ init_values=1.0,
410
+ ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
411
+ block_chunks=0,
412
+ num_register_tokens=0,
413
+ interpolate_antialias=False,
414
+ interpolate_offset=0.1
415
+ )
metric_depth/depth_anything_v2/dinov2_layers/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .mlp import Mlp
8
+ from .patch_embed import PatchEmbed
9
+ from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
10
+ from .block import NestedTensorBlock
11
+ from .attention import MemEffAttention
metric_depth/depth_anything_v2/dinov2_layers/attention.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
10
+
11
+ import logging
12
+
13
+ from torch import Tensor
14
+ from torch import nn
15
+
16
+
17
+ logger = logging.getLogger("dinov2")
18
+
19
+
20
+ try:
21
+ from xformers.ops import memory_efficient_attention, unbind, fmha
22
+
23
+ XFORMERS_AVAILABLE = True
24
+ except ImportError:
25
+ logger.warning("xFormers not available")
26
+ XFORMERS_AVAILABLE = False
27
+
28
+
29
+ class Attention(nn.Module):
30
+ def __init__(
31
+ self,
32
+ dim: int,
33
+ num_heads: int = 8,
34
+ qkv_bias: bool = False,
35
+ proj_bias: bool = True,
36
+ attn_drop: float = 0.0,
37
+ proj_drop: float = 0.0,
38
+ ) -> None:
39
+ super().__init__()
40
+ self.num_heads = num_heads
41
+ head_dim = dim // num_heads
42
+ self.scale = head_dim**-0.5
43
+
44
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
45
+ self.attn_drop = nn.Dropout(attn_drop)
46
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
47
+ self.proj_drop = nn.Dropout(proj_drop)
48
+
49
+ def forward(self, x: Tensor) -> Tensor:
50
+ B, N, C = x.shape
51
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
52
+
53
+ q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
54
+ attn = q @ k.transpose(-2, -1)
55
+
56
+ attn = attn.softmax(dim=-1)
57
+ attn = self.attn_drop(attn)
58
+
59
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
60
+ x = self.proj(x)
61
+ x = self.proj_drop(x)
62
+ return x
63
+
64
+
65
+ class MemEffAttention(Attention):
66
+ def forward(self, x: Tensor, attn_bias=None) -> Tensor:
67
+ if not XFORMERS_AVAILABLE:
68
+ assert attn_bias is None, "xFormers is required for nested tensors usage"
69
+ return super().forward(x)
70
+
71
+ B, N, C = x.shape
72
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
73
+
74
+ q, k, v = unbind(qkv, 2)
75
+
76
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
77
+ x = x.reshape([B, N, C])
78
+
79
+ x = self.proj(x)
80
+ x = self.proj_drop(x)
81
+ return x
82
+
83
+
metric_depth/depth_anything_v2/dinov2_layers/block.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ import logging
12
+ from typing import Callable, List, Any, Tuple, Dict
13
+
14
+ import torch
15
+ from torch import nn, Tensor
16
+
17
+ from .attention import Attention, MemEffAttention
18
+ from .drop_path import DropPath
19
+ from .layer_scale import LayerScale
20
+ from .mlp import Mlp
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ try:
27
+ from xformers.ops import fmha
28
+ from xformers.ops import scaled_index_add, index_select_cat
29
+
30
+ XFORMERS_AVAILABLE = True
31
+ except ImportError:
32
+ logger.warning("xFormers not available")
33
+ XFORMERS_AVAILABLE = False
34
+
35
+
36
+ class Block(nn.Module):
37
+ def __init__(
38
+ self,
39
+ dim: int,
40
+ num_heads: int,
41
+ mlp_ratio: float = 4.0,
42
+ qkv_bias: bool = False,
43
+ proj_bias: bool = True,
44
+ ffn_bias: bool = True,
45
+ drop: float = 0.0,
46
+ attn_drop: float = 0.0,
47
+ init_values=None,
48
+ drop_path: float = 0.0,
49
+ act_layer: Callable[..., nn.Module] = nn.GELU,
50
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
51
+ attn_class: Callable[..., nn.Module] = Attention,
52
+ ffn_layer: Callable[..., nn.Module] = Mlp,
53
+ ) -> None:
54
+ super().__init__()
55
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
56
+ self.norm1 = norm_layer(dim)
57
+ self.attn = attn_class(
58
+ dim,
59
+ num_heads=num_heads,
60
+ qkv_bias=qkv_bias,
61
+ proj_bias=proj_bias,
62
+ attn_drop=attn_drop,
63
+ proj_drop=drop,
64
+ )
65
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
66
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
67
+
68
+ self.norm2 = norm_layer(dim)
69
+ mlp_hidden_dim = int(dim * mlp_ratio)
70
+ self.mlp = ffn_layer(
71
+ in_features=dim,
72
+ hidden_features=mlp_hidden_dim,
73
+ act_layer=act_layer,
74
+ drop=drop,
75
+ bias=ffn_bias,
76
+ )
77
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
78
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
79
+
80
+ self.sample_drop_ratio = drop_path
81
+
82
+ def forward(self, x: Tensor) -> Tensor:
83
+ def attn_residual_func(x: Tensor) -> Tensor:
84
+ return self.ls1(self.attn(self.norm1(x)))
85
+
86
+ def ffn_residual_func(x: Tensor) -> Tensor:
87
+ return self.ls2(self.mlp(self.norm2(x)))
88
+
89
+ if self.training and self.sample_drop_ratio > 0.1:
90
+ # the overhead is compensated only for a drop path rate larger than 0.1
91
+ x = drop_add_residual_stochastic_depth(
92
+ x,
93
+ residual_func=attn_residual_func,
94
+ sample_drop_ratio=self.sample_drop_ratio,
95
+ )
96
+ x = drop_add_residual_stochastic_depth(
97
+ x,
98
+ residual_func=ffn_residual_func,
99
+ sample_drop_ratio=self.sample_drop_ratio,
100
+ )
101
+ elif self.training and self.sample_drop_ratio > 0.0:
102
+ x = x + self.drop_path1(attn_residual_func(x))
103
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
104
+ else:
105
+ x = x + attn_residual_func(x)
106
+ x = x + ffn_residual_func(x)
107
+ return x
108
+
109
+
110
+ def drop_add_residual_stochastic_depth(
111
+ x: Tensor,
112
+ residual_func: Callable[[Tensor], Tensor],
113
+ sample_drop_ratio: float = 0.0,
114
+ ) -> Tensor:
115
+ # 1) extract subset using permutation
116
+ b, n, d = x.shape
117
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
118
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
119
+ x_subset = x[brange]
120
+
121
+ # 2) apply residual_func to get residual
122
+ residual = residual_func(x_subset)
123
+
124
+ x_flat = x.flatten(1)
125
+ residual = residual.flatten(1)
126
+
127
+ residual_scale_factor = b / sample_subset_size
128
+
129
+ # 3) add the residual
130
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
131
+ return x_plus_residual.view_as(x)
132
+
133
+
134
+ def get_branges_scales(x, sample_drop_ratio=0.0):
135
+ b, n, d = x.shape
136
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
137
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
138
+ residual_scale_factor = b / sample_subset_size
139
+ return brange, residual_scale_factor
140
+
141
+
142
+ def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
143
+ if scaling_vector is None:
144
+ x_flat = x.flatten(1)
145
+ residual = residual.flatten(1)
146
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
147
+ else:
148
+ x_plus_residual = scaled_index_add(
149
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
150
+ )
151
+ return x_plus_residual
152
+
153
+
154
+ attn_bias_cache: Dict[Tuple, Any] = {}
155
+
156
+
157
+ def get_attn_bias_and_cat(x_list, branges=None):
158
+ """
159
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
160
+ """
161
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
162
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
163
+ if all_shapes not in attn_bias_cache.keys():
164
+ seqlens = []
165
+ for b, x in zip(batch_sizes, x_list):
166
+ for _ in range(b):
167
+ seqlens.append(x.shape[1])
168
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
169
+ attn_bias._batch_sizes = batch_sizes
170
+ attn_bias_cache[all_shapes] = attn_bias
171
+
172
+ if branges is not None:
173
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
174
+ else:
175
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
176
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
177
+
178
+ return attn_bias_cache[all_shapes], cat_tensors
179
+
180
+
181
+ def drop_add_residual_stochastic_depth_list(
182
+ x_list: List[Tensor],
183
+ residual_func: Callable[[Tensor, Any], Tensor],
184
+ sample_drop_ratio: float = 0.0,
185
+ scaling_vector=None,
186
+ ) -> Tensor:
187
+ # 1) generate random set of indices for dropping samples in the batch
188
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
189
+ branges = [s[0] for s in branges_scales]
190
+ residual_scale_factors = [s[1] for s in branges_scales]
191
+
192
+ # 2) get attention bias and index+concat the tensors
193
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
194
+
195
+ # 3) apply residual_func to get residual, and split the result
196
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
197
+
198
+ outputs = []
199
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
200
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
201
+ return outputs
202
+
203
+
204
+ class NestedTensorBlock(Block):
205
+ def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
206
+ """
207
+ x_list contains a list of tensors to nest together and run
208
+ """
209
+ assert isinstance(self.attn, MemEffAttention)
210
+
211
+ if self.training and self.sample_drop_ratio > 0.0:
212
+
213
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
214
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
215
+
216
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
217
+ return self.mlp(self.norm2(x))
218
+
219
+ x_list = drop_add_residual_stochastic_depth_list(
220
+ x_list,
221
+ residual_func=attn_residual_func,
222
+ sample_drop_ratio=self.sample_drop_ratio,
223
+ scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
224
+ )
225
+ x_list = drop_add_residual_stochastic_depth_list(
226
+ x_list,
227
+ residual_func=ffn_residual_func,
228
+ sample_drop_ratio=self.sample_drop_ratio,
229
+ scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
230
+ )
231
+ return x_list
232
+ else:
233
+
234
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
235
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
236
+
237
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
238
+ return self.ls2(self.mlp(self.norm2(x)))
239
+
240
+ attn_bias, x = get_attn_bias_and_cat(x_list)
241
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
242
+ x = x + ffn_residual_func(x)
243
+ return attn_bias.split(x)
244
+
245
+ def forward(self, x_or_x_list):
246
+ if isinstance(x_or_x_list, Tensor):
247
+ return super().forward(x_or_x_list)
248
+ elif isinstance(x_or_x_list, list):
249
+ assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
250
+ return self.forward_nested(x_or_x_list)
251
+ else:
252
+ raise AssertionError
metric_depth/depth_anything_v2/dinov2_layers/drop_path.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
10
+
11
+
12
+ from torch import nn
13
+
14
+
15
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
16
+ if drop_prob == 0.0 or not training:
17
+ return x
18
+ keep_prob = 1 - drop_prob
19
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
20
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
21
+ if keep_prob > 0.0:
22
+ random_tensor.div_(keep_prob)
23
+ output = x * random_tensor
24
+ return output
25
+
26
+
27
+ class DropPath(nn.Module):
28
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
29
+
30
+ def __init__(self, drop_prob=None):
31
+ super(DropPath, self).__init__()
32
+ self.drop_prob = drop_prob
33
+
34
+ def forward(self, x):
35
+ return drop_path(x, self.drop_prob, self.training)
metric_depth/depth_anything_v2/dinov2_layers/layer_scale.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
8
+
9
+ from typing import Union
10
+
11
+ import torch
12
+ from torch import Tensor
13
+ from torch import nn
14
+
15
+
16
+ class LayerScale(nn.Module):
17
+ def __init__(
18
+ self,
19
+ dim: int,
20
+ init_values: Union[float, Tensor] = 1e-5,
21
+ inplace: bool = False,
22
+ ) -> None:
23
+ super().__init__()
24
+ self.inplace = inplace
25
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
26
+
27
+ def forward(self, x: Tensor) -> Tensor:
28
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
metric_depth/depth_anything_v2/dinov2_layers/mlp.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
10
+
11
+
12
+ from typing import Callable, Optional
13
+
14
+ from torch import Tensor, nn
15
+
16
+
17
+ class Mlp(nn.Module):
18
+ def __init__(
19
+ self,
20
+ in_features: int,
21
+ hidden_features: Optional[int] = None,
22
+ out_features: Optional[int] = None,
23
+ act_layer: Callable[..., nn.Module] = nn.GELU,
24
+ drop: float = 0.0,
25
+ bias: bool = True,
26
+ ) -> None:
27
+ super().__init__()
28
+ out_features = out_features or in_features
29
+ hidden_features = hidden_features or in_features
30
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
31
+ self.act = act_layer()
32
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
33
+ self.drop = nn.Dropout(drop)
34
+
35
+ def forward(self, x: Tensor) -> Tensor:
36
+ x = self.fc1(x)
37
+ x = self.act(x)
38
+ x = self.drop(x)
39
+ x = self.fc2(x)
40
+ x = self.drop(x)
41
+ return x
metric_depth/depth_anything_v2/dinov2_layers/patch_embed.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ from typing import Callable, Optional, Tuple, Union
12
+
13
+ from torch import Tensor
14
+ import torch.nn as nn
15
+
16
+
17
+ def make_2tuple(x):
18
+ if isinstance(x, tuple):
19
+ assert len(x) == 2
20
+ return x
21
+
22
+ assert isinstance(x, int)
23
+ return (x, x)
24
+
25
+
26
+ class PatchEmbed(nn.Module):
27
+ """
28
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
29
+
30
+ Args:
31
+ img_size: Image size.
32
+ patch_size: Patch token size.
33
+ in_chans: Number of input image channels.
34
+ embed_dim: Number of linear projection output channels.
35
+ norm_layer: Normalization layer.
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ img_size: Union[int, Tuple[int, int]] = 224,
41
+ patch_size: Union[int, Tuple[int, int]] = 16,
42
+ in_chans: int = 3,
43
+ embed_dim: int = 768,
44
+ norm_layer: Optional[Callable] = None,
45
+ flatten_embedding: bool = True,
46
+ ) -> None:
47
+ super().__init__()
48
+
49
+ image_HW = make_2tuple(img_size)
50
+ patch_HW = make_2tuple(patch_size)
51
+ patch_grid_size = (
52
+ image_HW[0] // patch_HW[0],
53
+ image_HW[1] // patch_HW[1],
54
+ )
55
+
56
+ self.img_size = image_HW
57
+ self.patch_size = patch_HW
58
+ self.patches_resolution = patch_grid_size
59
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
60
+
61
+ self.in_chans = in_chans
62
+ self.embed_dim = embed_dim
63
+
64
+ self.flatten_embedding = flatten_embedding
65
+
66
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
67
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
68
+
69
+ def forward(self, x: Tensor) -> Tensor:
70
+ _, _, H, W = x.shape
71
+ patch_H, patch_W = self.patch_size
72
+
73
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
74
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
75
+
76
+ x = self.proj(x) # B C H W
77
+ H, W = x.size(2), x.size(3)
78
+ x = x.flatten(2).transpose(1, 2) # B HW C
79
+ x = self.norm(x)
80
+ if not self.flatten_embedding:
81
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
82
+ return x
83
+
84
+ def flops(self) -> float:
85
+ Ho, Wo = self.patches_resolution
86
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
87
+ if self.norm is not None:
88
+ flops += Ho * Wo * self.embed_dim
89
+ return flops
metric_depth/depth_anything_v2/dinov2_layers/swiglu_ffn.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Callable, Optional
8
+
9
+ from torch import Tensor, nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class SwiGLUFFN(nn.Module):
14
+ def __init__(
15
+ self,
16
+ in_features: int,
17
+ hidden_features: Optional[int] = None,
18
+ out_features: Optional[int] = None,
19
+ act_layer: Callable[..., nn.Module] = None,
20
+ drop: float = 0.0,
21
+ bias: bool = True,
22
+ ) -> None:
23
+ super().__init__()
24
+ out_features = out_features or in_features
25
+ hidden_features = hidden_features or in_features
26
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
27
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
28
+
29
+ def forward(self, x: Tensor) -> Tensor:
30
+ x12 = self.w12(x)
31
+ x1, x2 = x12.chunk(2, dim=-1)
32
+ hidden = F.silu(x1) * x2
33
+ return self.w3(hidden)
34
+
35
+
36
+ try:
37
+ from xformers.ops import SwiGLU
38
+
39
+ XFORMERS_AVAILABLE = True
40
+ except ImportError:
41
+ SwiGLU = SwiGLUFFN
42
+ XFORMERS_AVAILABLE = False
43
+
44
+
45
+ class SwiGLUFFNFused(SwiGLU):
46
+ def __init__(
47
+ self,
48
+ in_features: int,
49
+ hidden_features: Optional[int] = None,
50
+ out_features: Optional[int] = None,
51
+ act_layer: Callable[..., nn.Module] = None,
52
+ drop: float = 0.0,
53
+ bias: bool = True,
54
+ ) -> None:
55
+ out_features = out_features or in_features
56
+ hidden_features = hidden_features or in_features
57
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
58
+ super().__init__(
59
+ in_features=in_features,
60
+ hidden_features=hidden_features,
61
+ out_features=out_features,
62
+ bias=bias,
63
+ )
metric_depth/depth_anything_v2/dpt.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torchvision.transforms import Compose
6
+
7
+ from .dinov2 import DINOv2
8
+ from .util.blocks import FeatureFusionBlock, _make_scratch
9
+ from .util.transform import Resize, NormalizeImage, PrepareForNet
10
+
11
+
12
+ def _make_fusion_block(features, use_bn, size=None):
13
+ return FeatureFusionBlock(
14
+ features,
15
+ nn.ReLU(False),
16
+ deconv=False,
17
+ bn=use_bn,
18
+ expand=False,
19
+ align_corners=True,
20
+ size=size,
21
+ )
22
+
23
+
24
+ class ConvBlock(nn.Module):
25
+ def __init__(self, in_feature, out_feature):
26
+ super().__init__()
27
+
28
+ self.conv_block = nn.Sequential(
29
+ nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
30
+ nn.BatchNorm2d(out_feature),
31
+ nn.ReLU(True)
32
+ )
33
+
34
+ def forward(self, x):
35
+ return self.conv_block(x)
36
+
37
+
38
+ class DPTHead(nn.Module):
39
+ def __init__(
40
+ self,
41
+ in_channels,
42
+ features=256,
43
+ use_bn=False,
44
+ out_channels=[256, 512, 1024, 1024],
45
+ use_clstoken=False
46
+ ):
47
+ super(DPTHead, self).__init__()
48
+
49
+ self.use_clstoken = use_clstoken
50
+
51
+ self.projects = nn.ModuleList([
52
+ nn.Conv2d(
53
+ in_channels=in_channels,
54
+ out_channels=out_channel,
55
+ kernel_size=1,
56
+ stride=1,
57
+ padding=0,
58
+ ) for out_channel in out_channels
59
+ ])
60
+
61
+ self.resize_layers = nn.ModuleList([
62
+ nn.ConvTranspose2d(
63
+ in_channels=out_channels[0],
64
+ out_channels=out_channels[0],
65
+ kernel_size=4,
66
+ stride=4,
67
+ padding=0),
68
+ nn.ConvTranspose2d(
69
+ in_channels=out_channels[1],
70
+ out_channels=out_channels[1],
71
+ kernel_size=2,
72
+ stride=2,
73
+ padding=0),
74
+ nn.Identity(),
75
+ nn.Conv2d(
76
+ in_channels=out_channels[3],
77
+ out_channels=out_channels[3],
78
+ kernel_size=3,
79
+ stride=2,
80
+ padding=1)
81
+ ])
82
+
83
+ if use_clstoken:
84
+ self.readout_projects = nn.ModuleList()
85
+ for _ in range(len(self.projects)):
86
+ self.readout_projects.append(
87
+ nn.Sequential(
88
+ nn.Linear(2 * in_channels, in_channels),
89
+ nn.GELU()))
90
+
91
+ self.scratch = _make_scratch(
92
+ out_channels,
93
+ features,
94
+ groups=1,
95
+ expand=False,
96
+ )
97
+
98
+ self.scratch.stem_transpose = None
99
+
100
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
101
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
102
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
103
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
104
+
105
+ head_features_1 = features
106
+ head_features_2 = 32
107
+
108
+ self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
109
+ self.scratch.output_conv2 = nn.Sequential(
110
+ nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
111
+ nn.ReLU(True),
112
+ nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
113
+ nn.Sigmoid()
114
+ )
115
+
116
+ def forward(self, out_features, patch_h, patch_w):
117
+ out = []
118
+ for i, x in enumerate(out_features):
119
+ if self.use_clstoken:
120
+ x, cls_token = x[0], x[1]
121
+ readout = cls_token.unsqueeze(1).expand_as(x)
122
+ x = self.readout_projects[i](torch.cat((x, readout), -1))
123
+ else:
124
+ x = x[0]
125
+
126
+ x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
127
+
128
+ x = self.projects[i](x)
129
+ x = self.resize_layers[i](x)
130
+
131
+ out.append(x)
132
+
133
+ layer_1, layer_2, layer_3, layer_4 = out
134
+
135
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
136
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
137
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
138
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
139
+
140
+ path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
141
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
142
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
143
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
144
+
145
+ out = self.scratch.output_conv1(path_1)
146
+ out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
147
+ out = self.scratch.output_conv2(out)
148
+
149
+ return out
150
+
151
+
152
+ class DepthAnythingV2(nn.Module):
153
+ def __init__(
154
+ self,
155
+ encoder='vitl',
156
+ features=256,
157
+ out_channels=[256, 512, 1024, 1024],
158
+ use_bn=False,
159
+ use_clstoken=False,
160
+ max_depth=20.0
161
+ ):
162
+ super(DepthAnythingV2, self).__init__()
163
+
164
+ self.intermediate_layer_idx = {
165
+ 'vits': [2, 5, 8, 11],
166
+ 'vitb': [2, 5, 8, 11],
167
+ 'vitl': [4, 11, 17, 23],
168
+ 'vitg': [9, 19, 29, 39]
169
+ }
170
+
171
+ self.max_depth = max_depth
172
+
173
+ self.encoder = encoder
174
+ self.pretrained = DINOv2(model_name=encoder)
175
+
176
+ self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
177
+
178
+ def forward(self, x):
179
+ patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
180
+
181
+ features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
182
+
183
+ depth = self.depth_head(features, patch_h, patch_w) * self.max_depth
184
+
185
+ return depth.squeeze(1)
186
+
187
+ @torch.no_grad()
188
+ def infer_image(self, raw_image, input_size=518):
189
+ image, (h, w) = self.image2tensor(raw_image, input_size)
190
+
191
+ depth = self.forward(image)
192
+
193
+ depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
194
+
195
+ return depth.cpu().numpy()
196
+
197
+ def image2tensor(self, raw_image, input_size=518):
198
+ transform = Compose([
199
+ Resize(
200
+ width=input_size,
201
+ height=input_size,
202
+ resize_target=False,
203
+ keep_aspect_ratio=True,
204
+ ensure_multiple_of=14,
205
+ resize_method='lower_bound',
206
+ image_interpolation_method=cv2.INTER_CUBIC,
207
+ ),
208
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
209
+ PrepareForNet(),
210
+ ])
211
+
212
+ h, w = raw_image.shape[:2]
213
+
214
+ image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
215
+
216
+ image = transform({'image': image})['image']
217
+ image = torch.from_numpy(image).unsqueeze(0)
218
+
219
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
220
+ image = image.to(DEVICE)
221
+
222
+ return image, (h, w)
metric_depth/depth_anything_v2/util/blocks.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
5
+ scratch = nn.Module()
6
+
7
+ out_shape1 = out_shape
8
+ out_shape2 = out_shape
9
+ out_shape3 = out_shape
10
+ if len(in_shape) >= 4:
11
+ out_shape4 = out_shape
12
+
13
+ if expand:
14
+ out_shape1 = out_shape
15
+ out_shape2 = out_shape * 2
16
+ out_shape3 = out_shape * 4
17
+ if len(in_shape) >= 4:
18
+ out_shape4 = out_shape * 8
19
+
20
+ scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
21
+ scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
22
+ scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
23
+ if len(in_shape) >= 4:
24
+ scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
25
+
26
+ return scratch
27
+
28
+
29
+ class ResidualConvUnit(nn.Module):
30
+ """Residual convolution module.
31
+ """
32
+
33
+ def __init__(self, features, activation, bn):
34
+ """Init.
35
+
36
+ Args:
37
+ features (int): number of features
38
+ """
39
+ super().__init__()
40
+
41
+ self.bn = bn
42
+
43
+ self.groups=1
44
+
45
+ self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
46
+
47
+ self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
48
+
49
+ if self.bn == True:
50
+ self.bn1 = nn.BatchNorm2d(features)
51
+ self.bn2 = nn.BatchNorm2d(features)
52
+
53
+ self.activation = activation
54
+
55
+ self.skip_add = nn.quantized.FloatFunctional()
56
+
57
+ def forward(self, x):
58
+ """Forward pass.
59
+
60
+ Args:
61
+ x (tensor): input
62
+
63
+ Returns:
64
+ tensor: output
65
+ """
66
+
67
+ out = self.activation(x)
68
+ out = self.conv1(out)
69
+ if self.bn == True:
70
+ out = self.bn1(out)
71
+
72
+ out = self.activation(out)
73
+ out = self.conv2(out)
74
+ if self.bn == True:
75
+ out = self.bn2(out)
76
+
77
+ if self.groups > 1:
78
+ out = self.conv_merge(out)
79
+
80
+ return self.skip_add.add(out, x)
81
+
82
+
83
+ class FeatureFusionBlock(nn.Module):
84
+ """Feature fusion block.
85
+ """
86
+
87
+ def __init__(
88
+ self,
89
+ features,
90
+ activation,
91
+ deconv=False,
92
+ bn=False,
93
+ expand=False,
94
+ align_corners=True,
95
+ size=None
96
+ ):
97
+ """Init.
98
+
99
+ Args:
100
+ features (int): number of features
101
+ """
102
+ super(FeatureFusionBlock, self).__init__()
103
+
104
+ self.deconv = deconv
105
+ self.align_corners = align_corners
106
+
107
+ self.groups=1
108
+
109
+ self.expand = expand
110
+ out_features = features
111
+ if self.expand == True:
112
+ out_features = features // 2
113
+
114
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
115
+
116
+ self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
117
+ self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
118
+
119
+ self.skip_add = nn.quantized.FloatFunctional()
120
+
121
+ self.size=size
122
+
123
+ def forward(self, *xs, size=None):
124
+ """Forward pass.
125
+
126
+ Returns:
127
+ tensor: output
128
+ """
129
+ output = xs[0]
130
+
131
+ if len(xs) == 2:
132
+ res = self.resConfUnit1(xs[1])
133
+ output = self.skip_add.add(output, res)
134
+
135
+ output = self.resConfUnit2(output)
136
+
137
+ if (size is None) and (self.size is None):
138
+ modifier = {"scale_factor": 2}
139
+ elif size is None:
140
+ modifier = {"size": self.size}
141
+ else:
142
+ modifier = {"size": size}
143
+
144
+ output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
145
+
146
+ output = self.out_conv(output)
147
+
148
+ return output
metric_depth/depth_anything_v2/util/transform.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+
5
+ class Resize(object):
6
+ """Resize sample to given size (width, height).
7
+ """
8
+
9
+ def __init__(
10
+ self,
11
+ width,
12
+ height,
13
+ resize_target=True,
14
+ keep_aspect_ratio=False,
15
+ ensure_multiple_of=1,
16
+ resize_method="lower_bound",
17
+ image_interpolation_method=cv2.INTER_AREA,
18
+ ):
19
+ """Init.
20
+
21
+ Args:
22
+ width (int): desired output width
23
+ height (int): desired output height
24
+ resize_target (bool, optional):
25
+ True: Resize the full sample (image, mask, target).
26
+ False: Resize image only.
27
+ Defaults to True.
28
+ keep_aspect_ratio (bool, optional):
29
+ True: Keep the aspect ratio of the input sample.
30
+ Output sample might not have the given width and height, and
31
+ resize behaviour depends on the parameter 'resize_method'.
32
+ Defaults to False.
33
+ ensure_multiple_of (int, optional):
34
+ Output width and height is constrained to be multiple of this parameter.
35
+ Defaults to 1.
36
+ resize_method (str, optional):
37
+ "lower_bound": Output will be at least as large as the given size.
38
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
39
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
40
+ Defaults to "lower_bound".
41
+ """
42
+ self.__width = width
43
+ self.__height = height
44
+
45
+ self.__resize_target = resize_target
46
+ self.__keep_aspect_ratio = keep_aspect_ratio
47
+ self.__multiple_of = ensure_multiple_of
48
+ self.__resize_method = resize_method
49
+ self.__image_interpolation_method = image_interpolation_method
50
+
51
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
52
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
53
+
54
+ if max_val is not None and y > max_val:
55
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
56
+
57
+ if y < min_val:
58
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
59
+
60
+ return y
61
+
62
+ def get_size(self, width, height):
63
+ # determine new height and width
64
+ scale_height = self.__height / height
65
+ scale_width = self.__width / width
66
+
67
+ if self.__keep_aspect_ratio:
68
+ if self.__resize_method == "lower_bound":
69
+ # scale such that output size is lower bound
70
+ if scale_width > scale_height:
71
+ # fit width
72
+ scale_height = scale_width
73
+ else:
74
+ # fit height
75
+ scale_width = scale_height
76
+ elif self.__resize_method == "upper_bound":
77
+ # scale such that output size is upper bound
78
+ if scale_width < scale_height:
79
+ # fit width
80
+ scale_height = scale_width
81
+ else:
82
+ # fit height
83
+ scale_width = scale_height
84
+ elif self.__resize_method == "minimal":
85
+ # scale as least as possbile
86
+ if abs(1 - scale_width) < abs(1 - scale_height):
87
+ # fit width
88
+ scale_height = scale_width
89
+ else:
90
+ # fit height
91
+ scale_width = scale_height
92
+ else:
93
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
94
+
95
+ if self.__resize_method == "lower_bound":
96
+ new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
97
+ new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
98
+ elif self.__resize_method == "upper_bound":
99
+ new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
100
+ new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
101
+ elif self.__resize_method == "minimal":
102
+ new_height = self.constrain_to_multiple_of(scale_height * height)
103
+ new_width = self.constrain_to_multiple_of(scale_width * width)
104
+ else:
105
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
106
+
107
+ return (new_width, new_height)
108
+
109
+ def __call__(self, sample):
110
+ width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
111
+
112
+ # resize sample
113
+ sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
114
+
115
+ if self.__resize_target:
116
+ if "depth" in sample:
117
+ sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
118
+
119
+ if "mask" in sample:
120
+ sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
121
+
122
+ return sample
123
+
124
+
125
+ class NormalizeImage(object):
126
+ """Normlize image by given mean and std.
127
+ """
128
+
129
+ def __init__(self, mean, std):
130
+ self.__mean = mean
131
+ self.__std = std
132
+
133
+ def __call__(self, sample):
134
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
135
+
136
+ return sample
137
+
138
+
139
+ class PrepareForNet(object):
140
+ """Prepare sample for usage as network input.
141
+ """
142
+
143
+ def __init__(self):
144
+ pass
145
+
146
+ def __call__(self, sample):
147
+ image = np.transpose(sample["image"], (2, 0, 1))
148
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
149
+
150
+ if "depth" in sample:
151
+ depth = sample["depth"].astype(np.float32)
152
+ sample["depth"] = np.ascontiguousarray(depth)
153
+
154
+ if "mask" in sample:
155
+ sample["mask"] = sample["mask"].astype(np.float32)
156
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
157
+
158
+ return sample
metric_depth/depth_to_pointcloud.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Born out of Depth Anything V1 Issue 36
2
+ # Make sure you have the necessary libraries
3
+ # Code by @1ssb
4
+
5
+ import argparse
6
+ import cv2
7
+ import glob
8
+ import numpy as np
9
+ import open3d as o3d
10
+ import os
11
+ from PIL import Image
12
+ import torch
13
+
14
+ from depth_anything_v2.dpt import DepthAnythingV2
15
+
16
+
17
+ if __name__ == '__main__':
18
+ parser = argparse.ArgumentParser()
19
+ parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'])
20
+ parser.add_argument('--load-from', default='', type=str)
21
+ parser.add_argument('--max-depth', default=20, type=float)
22
+
23
+ parser.add_argument('--img-path', type=str)
24
+ parser.add_argument('--outdir', type=str, default='./vis_pointcloud')
25
+
26
+ args = parser.parse_args()
27
+
28
+ # Global settings
29
+ FL = 715.0873
30
+ FY = 784 * 0.6
31
+ FX = 784 * 0.6
32
+ NYU_DATA = False
33
+ FINAL_HEIGHT = 518
34
+ FINAL_WIDTH = 518
35
+
36
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
37
+
38
+ model_configs = {
39
+ 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
40
+ 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
41
+ 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
42
+ 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
43
+ }
44
+
45
+ depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
46
+ depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'))
47
+ depth_anything = depth_anything.to(DEVICE).eval()
48
+
49
+ if os.path.isfile(args.img_path):
50
+ if args.img_path.endswith('txt'):
51
+ with open(args.img_path, 'r') as f:
52
+ filenames = f.read().splitlines()
53
+ else:
54
+ filenames = [args.img_path]
55
+ else:
56
+ filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)
57
+
58
+ os.makedirs(args.outdir, exist_ok=True)
59
+
60
+ for k, filename in enumerate(filenames):
61
+ print(f'Progress {k+1}/{len(filenames)}: {filename}')
62
+
63
+ color_image = Image.open(filename).convert('RGB')
64
+
65
+ image = cv2.imread(filename)
66
+ pred = depth_anything.infer_image(image, FINAL_HEIGHT)
67
+
68
+ # Resize color image and depth to final size
69
+ resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS)
70
+ resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST)
71
+
72
+ focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL)
73
+ x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT))
74
+ x = (x - FINAL_WIDTH / 2) / focal_length_x
75
+ y = (y - FINAL_HEIGHT / 2) / focal_length_y
76
+ z = np.array(resized_pred)
77
+ points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3)
78
+ colors = np.array(resized_color_image).reshape(-1, 3) / 255.0
79
+
80
+ pcd = o3d.geometry.PointCloud()
81
+ pcd.points = o3d.utility.Vector3dVector(points)
82
+ pcd.colors = o3d.utility.Vector3dVector(colors)
83
+ o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd)
metric_depth/dist_train.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ now=$(date +"%Y%m%d_%H%M%S")
3
+
4
+ epoch=120
5
+ bs=4
6
+ gpus=8
7
+ lr=0.000005
8
+ encoder=vitl
9
+ dataset=hypersim # vkitti
10
+ img_size=518
11
+ min_depth=0.001
12
+ max_depth=20 # 80 for virtual kitti
13
+ pretrained_from=../checkpoints/depth_anything_v2_${encoder}.pth
14
+ save_path=exp/hypersim # exp/vkitti
15
+
16
+ mkdir -p $save_path
17
+
18
+ python3 -m torch.distributed.launch \
19
+ --nproc_per_node=$gpus \
20
+ --nnodes 1 \
21
+ --node_rank=0 \
22
+ --master_addr=localhost \
23
+ --master_port=20596 \
24
+ train.py --epoch $epoch --encoder $encoder --bs $bs --lr $lr --save-path $save_path --dataset $dataset \
25
+ --img-size $img_size --min-depth $min_depth --max-depth $max_depth --pretrained-from $pretrained_from \
26
+ --port 20596 2>&1 | tee -a $save_path/$now.log
metric_depth/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ matplotlib
2
+ opencv-python
3
+ open3d
4
+ torch
5
+ torchvision
metric_depth/run.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import matplotlib
5
+ import numpy as np
6
+ import os
7
+ import torch
8
+
9
+ from depth_anything_v2.dpt import DepthAnythingV2
10
+
11
+
12
+ if __name__ == '__main__':
13
+ parser = argparse.ArgumentParser(description='Depth Anything V2 Metric Depth Estimation')
14
+
15
+ parser.add_argument('--img-path', type=str)
16
+ parser.add_argument('--input-size', type=int, default=518)
17
+ parser.add_argument('--outdir', type=str, default='./vis_depth')
18
+
19
+ parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
20
+ parser.add_argument('--load-from', type=str, default='checkpoints/depth_anything_v2_metric_hypersim_vitl.pth')
21
+ parser.add_argument('--max-depth', type=float, default=20)
22
+
23
+ parser.add_argument('--save-numpy', dest='save_numpy', action='store_true', help='save the model raw output')
24
+ parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction')
25
+ parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette')
26
+
27
+ args = parser.parse_args()
28
+
29
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
30
+
31
+ model_configs = {
32
+ 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
33
+ 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
34
+ 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
35
+ 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
36
+ }
37
+
38
+ depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
39
+ depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'))
40
+ depth_anything = depth_anything.to(DEVICE).eval()
41
+
42
+ if os.path.isfile(args.img_path):
43
+ if args.img_path.endswith('txt'):
44
+ with open(args.img_path, 'r') as f:
45
+ filenames = f.read().splitlines()
46
+ else:
47
+ filenames = [args.img_path]
48
+ else:
49
+ filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)
50
+
51
+ os.makedirs(args.outdir, exist_ok=True)
52
+
53
+ cmap = matplotlib.colormaps.get_cmap('Spectral')
54
+
55
+ for k, filename in enumerate(filenames):
56
+ print(f'Progress {k+1}/{len(filenames)}: {filename}')
57
+
58
+ raw_image = cv2.imread(filename)
59
+
60
+ depth = depth_anything.infer_image(raw_image, args.input_size)
61
+
62
+ if args.save_numpy:
63
+ output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '_raw_depth_meter.npy')
64
+ np.save(output_path, depth)
65
+
66
+ depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
67
+ depth = depth.astype(np.uint8)
68
+
69
+ if args.grayscale:
70
+ depth = np.repeat(depth[..., np.newaxis], 3, axis=-1)
71
+ else:
72
+ depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
73
+
74
+ output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png')
75
+ if args.pred_only:
76
+ cv2.imwrite(output_path, depth)
77
+ else:
78
+ split_region = np.ones((raw_image.shape[0], 50, 3), dtype=np.uint8) * 255
79
+ combined_result = cv2.hconcat([raw_image, split_region, depth])
80
+
81
+ cv2.imwrite(output_path, combined_result)
metric_depth/train.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import os
4
+ import pprint
5
+ import random
6
+
7
+ import warnings
8
+ import numpy as np
9
+ import torch
10
+ import torch.backends.cudnn as cudnn
11
+ import torch.distributed as dist
12
+ from torch.utils.data import DataLoader
13
+ from torch.optim import AdamW
14
+ import torch.nn.functional as F
15
+ from torch.utils.tensorboard import SummaryWriter
16
+
17
+ from dataset.hypersim import Hypersim
18
+ from dataset.kitti import KITTI
19
+ from dataset.vkitti2 import VKITTI2
20
+ from depth_anything_v2.dpt import DepthAnythingV2
21
+ from util.dist_helper import setup_distributed
22
+ from util.loss import SiLogLoss
23
+ from util.metric import eval_depth
24
+ from util.utils import init_log
25
+
26
+
27
+ parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation')
28
+
29
+ parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
30
+ parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti'])
31
+ parser.add_argument('--img-size', default=518, type=int)
32
+ parser.add_argument('--min-depth', default=0.001, type=float)
33
+ parser.add_argument('--max-depth', default=20, type=float)
34
+ parser.add_argument('--epochs', default=40, type=int)
35
+ parser.add_argument('--bs', default=2, type=int)
36
+ parser.add_argument('--lr', default=0.000005, type=float)
37
+ parser.add_argument('--pretrained-from', type=str)
38
+ parser.add_argument('--save-path', type=str, required=True)
39
+ parser.add_argument('--local-rank', default=0, type=int)
40
+ parser.add_argument('--port', default=None, type=int)
41
+
42
+
43
+ def main():
44
+ args = parser.parse_args()
45
+
46
+ warnings.simplefilter('ignore', np.RankWarning)
47
+
48
+ logger = init_log('global', logging.INFO)
49
+ logger.propagate = 0
50
+
51
+ rank, world_size = setup_distributed(port=args.port)
52
+
53
+ if rank == 0:
54
+ all_args = {**vars(args), 'ngpus': world_size}
55
+ logger.info('{}\n'.format(pprint.pformat(all_args)))
56
+ writer = SummaryWriter(args.save_path)
57
+
58
+ cudnn.enabled = True
59
+ cudnn.benchmark = True
60
+
61
+ size = (args.img_size, args.img_size)
62
+ if args.dataset == 'hypersim':
63
+ trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size)
64
+ elif args.dataset == 'vkitti':
65
+ trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size)
66
+ else:
67
+ raise NotImplementedError
68
+ trainsampler = torch.utils.data.distributed.DistributedSampler(trainset)
69
+ trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler)
70
+
71
+ if args.dataset == 'hypersim':
72
+ valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size)
73
+ elif args.dataset == 'vkitti':
74
+ valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size)
75
+ else:
76
+ raise NotImplementedError
77
+ valsampler = torch.utils.data.distributed.DistributedSampler(valset)
78
+ valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler)
79
+
80
+ local_rank = int(os.environ["LOCAL_RANK"])
81
+
82
+ model_configs = {
83
+ 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
84
+ 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
85
+ 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
86
+ 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
87
+ }
88
+ model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
89
+
90
+ if args.pretrained_from:
91
+ model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False)
92
+
93
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
94
+ model.cuda(local_rank)
95
+ model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
96
+ output_device=local_rank, find_unused_parameters=True)
97
+
98
+ criterion = SiLogLoss().cuda(local_rank)
99
+
100
+ optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr},
101
+ {'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}],
102
+ lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01)
103
+
104
+ total_iters = args.epochs * len(trainloader)
105
+
106
+ previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100, 'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100}
107
+
108
+ for epoch in range(args.epochs):
109
+ if rank == 0:
110
+ logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3']))
111
+ logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, '
112
+ 'log10: {:.3f}, silog: {:.3f}'.format(
113
+ epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'],
114
+ previous_best['rmse_log'], previous_best['log10'], previous_best['silog']))
115
+
116
+ trainloader.sampler.set_epoch(epoch + 1)
117
+
118
+ model.train()
119
+ total_loss = 0
120
+
121
+ for i, sample in enumerate(trainloader):
122
+ optimizer.zero_grad()
123
+
124
+ img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda()
125
+
126
+ if random.random() < 0.5:
127
+ img = img.flip(-1)
128
+ depth = depth.flip(-1)
129
+ valid_mask = valid_mask.flip(-1)
130
+
131
+ pred = model(img)
132
+
133
+ loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth))
134
+
135
+ loss.backward()
136
+ optimizer.step()
137
+
138
+ total_loss += loss.item()
139
+
140
+ iters = epoch * len(trainloader) + i
141
+
142
+ lr = args.lr * (1 - iters / total_iters) ** 0.9
143
+
144
+ optimizer.param_groups[0]["lr"] = lr
145
+ optimizer.param_groups[1]["lr"] = lr * 10.0
146
+
147
+ if rank == 0:
148
+ writer.add_scalar('train/loss', loss.item(), iters)
149
+
150
+ if rank == 0 and i % 100 == 0:
151
+ logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item()))
152
+
153
+ model.eval()
154
+
155
+ results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(),
156
+ 'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(),
157
+ 'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()}
158
+ nsamples = torch.tensor([0.0]).cuda()
159
+
160
+ for i, sample in enumerate(valloader):
161
+
162
+ img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0]
163
+
164
+ with torch.no_grad():
165
+ pred = model(img)
166
+ pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0]
167
+
168
+ valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)
169
+
170
+ if valid_mask.sum() < 10:
171
+ continue
172
+
173
+ cur_results = eval_depth(pred[valid_mask], depth[valid_mask])
174
+
175
+ for k in results.keys():
176
+ results[k] += cur_results[k]
177
+ nsamples += 1
178
+
179
+ torch.distributed.barrier()
180
+
181
+ for k in results.keys():
182
+ dist.reduce(results[k], dst=0)
183
+ dist.reduce(nsamples, dst=0)
184
+
185
+ if rank == 0:
186
+ logger.info('==========================================================================================')
187
+ logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys())))
188
+ logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(*tuple([(v / nsamples).item() for v in results.values()])))
189
+ logger.info('==========================================================================================')
190
+ print()
191
+
192
+ for name, metric in results.items():
193
+ writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch)
194
+
195
+ for k in results.keys():
196
+ if k in ['d1', 'd2', 'd3']:
197
+ previous_best[k] = max(previous_best[k], (results[k] / nsamples).item())
198
+ else:
199
+ previous_best[k] = min(previous_best[k], (results[k] / nsamples).item())
200
+
201
+ if rank == 0:
202
+ checkpoint = {
203
+ 'model': model.state_dict(),
204
+ 'optimizer': optimizer.state_dict(),
205
+ 'epoch': epoch,
206
+ 'previous_best': previous_best,
207
+ }
208
+ torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth'))
209
+
210
+
211
+ if __name__ == '__main__':
212
+ main()
metric_depth/util/dist_helper.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+
4
+ import torch
5
+ import torch.distributed as dist
6
+
7
+
8
+ def setup_distributed(backend="nccl", port=None):
9
+ """AdaHessian Optimizer
10
+ Lifted from https://github.com/BIGBALLON/distribuuuu/blob/master/distribuuuu/utils.py
11
+ Originally licensed MIT, Copyright (c) 2020 Wei Li
12
+ """
13
+ num_gpus = torch.cuda.device_count()
14
+
15
+ if "SLURM_JOB_ID" in os.environ:
16
+ rank = int(os.environ["SLURM_PROCID"])
17
+ world_size = int(os.environ["SLURM_NTASKS"])
18
+ node_list = os.environ["SLURM_NODELIST"]
19
+ addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
20
+ # specify master port
21
+ if port is not None:
22
+ os.environ["MASTER_PORT"] = str(port)
23
+ elif "MASTER_PORT" not in os.environ:
24
+ os.environ["MASTER_PORT"] = "10685"
25
+ if "MASTER_ADDR" not in os.environ:
26
+ os.environ["MASTER_ADDR"] = addr
27
+ os.environ["WORLD_SIZE"] = str(world_size)
28
+ os.environ["LOCAL_RANK"] = str(rank % num_gpus)
29
+ os.environ["RANK"] = str(rank)
30
+ else:
31
+ rank = int(os.environ["RANK"])
32
+ world_size = int(os.environ["WORLD_SIZE"])
33
+
34
+ torch.cuda.set_device(rank % num_gpus)
35
+
36
+ dist.init_process_group(
37
+ backend=backend,
38
+ world_size=world_size,
39
+ rank=rank,
40
+ )
41
+ return rank, world_size
metric_depth/util/loss.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class SiLogLoss(nn.Module):
6
+ def __init__(self, lambd=0.5):
7
+ super().__init__()
8
+ self.lambd = lambd
9
+
10
+ def forward(self, pred, target, valid_mask):
11
+ valid_mask = valid_mask.detach()
12
+ diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
13
+ loss = torch.sqrt(torch.pow(diff_log, 2).mean() -
14
+ self.lambd * torch.pow(diff_log.mean(), 2))
15
+
16
+ return loss
metric_depth/util/metric.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def eval_depth(pred, target):
5
+ assert pred.shape == target.shape
6
+
7
+ thresh = torch.max((target / pred), (pred / target))
8
+
9
+ d1 = torch.sum(thresh < 1.25).float() / len(thresh)
10
+ d2 = torch.sum(thresh < 1.25 ** 2).float() / len(thresh)
11
+ d3 = torch.sum(thresh < 1.25 ** 3).float() / len(thresh)
12
+
13
+ diff = pred - target
14
+ diff_log = torch.log(pred) - torch.log(target)
15
+
16
+ abs_rel = torch.mean(torch.abs(diff) / target)
17
+ sq_rel = torch.mean(torch.pow(diff, 2) / target)
18
+
19
+ rmse = torch.sqrt(torch.mean(torch.pow(diff, 2)))
20
+ rmse_log = torch.sqrt(torch.mean(torch.pow(diff_log , 2)))
21
+
22
+ log10 = torch.mean(torch.abs(torch.log10(pred) - torch.log10(target)))
23
+ silog = torch.sqrt(torch.pow(diff_log, 2).mean() - 0.5 * torch.pow(diff_log.mean(), 2))
24
+
25
+ return {'d1': d1.item(), 'd2': d2.item(), 'd3': d3.item(), 'abs_rel': abs_rel.item(), 'sq_rel': sq_rel.item(),
26
+ 'rmse': rmse.item(), 'rmse_log': rmse_log.item(), 'log10':log10.item(), 'silog':silog.item()}
metric_depth/util/utils.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import numpy as np
4
+ import logging
5
+
6
+ logs = set()
7
+
8
+
9
+ def init_log(name, level=logging.INFO):
10
+ if (name, level) in logs:
11
+ return
12
+ logs.add((name, level))
13
+ logger = logging.getLogger(name)
14
+ logger.setLevel(level)
15
+ ch = logging.StreamHandler()
16
+ ch.setLevel(level)
17
+ if "SLURM_PROCID" in os.environ:
18
+ rank = int(os.environ["SLURM_PROCID"])
19
+ logger.addFilter(lambda record: rank == 0)
20
+ else:
21
+ rank = 0
22
+ format_str = "[%(asctime)s][%(levelname)8s] %(message)s"
23
+ formatter = logging.Formatter(format_str)
24
+ ch.setFormatter(formatter)
25
+ logger.addHandler(ch)
26
+ return logger