Spaces:
Runtime error
Runtime error
Add slider view and cache examples (#3)
Browse files- Add slider view (21401baacb957c78a138966bc35a6ef8db6af5d5)
- Cache examples (392f705912d2c6bd326dfcbe79becb9f3cfc7792)
Co-authored-by: hysts <hysts@users.noreply.huggingface.co>
- app.py +9 -6
- requirements.txt +2 -1
app.py
CHANGED
@@ -8,6 +8,7 @@ import torch
|
|
8 |
import torch.nn.functional as F
|
9 |
from torchvision.transforms import Compose
|
10 |
import tempfile
|
|
|
11 |
|
12 |
from depth_anything.dpt import DPT_DINOv2
|
13 |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
@@ -58,11 +59,13 @@ with gr.Blocks(css=css) as demo:
|
|
58 |
|
59 |
with gr.Row():
|
60 |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
61 |
-
|
62 |
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)")
|
63 |
submit = gr.Button("Submit")
|
64 |
|
65 |
def on_submit(image):
|
|
|
|
|
66 |
h, w = image.shape[:2]
|
67 |
|
68 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
@@ -80,16 +83,16 @@ with gr.Blocks(css=css) as demo:
|
|
80 |
depth = depth.cpu().numpy().astype(np.uint8)
|
81 |
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
82 |
|
83 |
-
return [colored_depth, tmp.name]
|
|
|
|
|
84 |
|
85 |
-
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
86 |
-
|
87 |
example_files = os.listdir('examples')
|
88 |
example_files.sort()
|
89 |
example_files = [os.path.join('examples', filename) for filename in example_files]
|
90 |
-
examples = gr.Examples(examples=example_files, inputs=[input_image])
|
91 |
|
92 |
|
93 |
if __name__ == '__main__':
|
94 |
demo.queue().launch()
|
95 |
-
|
|
|
8 |
import torch.nn.functional as F
|
9 |
from torchvision.transforms import Compose
|
10 |
import tempfile
|
11 |
+
from gradio_imageslider import ImageSlider
|
12 |
|
13 |
from depth_anything.dpt import DPT_DINOv2
|
14 |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
|
|
59 |
|
60 |
with gr.Row():
|
61 |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
62 |
+
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0)
|
63 |
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)")
|
64 |
submit = gr.Button("Submit")
|
65 |
|
66 |
def on_submit(image):
|
67 |
+
original_image = image.copy()
|
68 |
+
|
69 |
h, w = image.shape[:2]
|
70 |
|
71 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
|
|
83 |
depth = depth.cpu().numpy().astype(np.uint8)
|
84 |
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
85 |
|
86 |
+
return [(original_image, colored_depth), tmp.name]
|
87 |
+
|
88 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file])
|
89 |
|
|
|
|
|
90 |
example_files = os.listdir('examples')
|
91 |
example_files.sort()
|
92 |
example_files = [os.path.join('examples', filename) for filename in example_files]
|
93 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, raw_file], fn=on_submit, cache_examples=True)
|
94 |
|
95 |
|
96 |
if __name__ == '__main__':
|
97 |
demo.queue().launch()
|
98 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
torch
|
2 |
torchvision
|
3 |
-
opencv-python
|
|
|
1 |
+
gradio_imageslider
|
2 |
torch
|
3 |
torchvision
|
4 |
+
opencv-python
|