Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# utilitary functions for DUSt3R | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
def todevice(batch, device, callback=None, non_blocking=False): | |
''' Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy). | |
batch: list, tuple, dict of tensors or other things | |
device: pytorch device or 'numpy' | |
callback: function that would be called on every sub-elements. | |
''' | |
if callback: | |
batch = callback(batch) | |
if isinstance(batch, dict): | |
return {k: todevice(v, device) for k, v in batch.items()} | |
if isinstance(batch, (tuple, list)): | |
return type(batch)(todevice(x, device) for x in batch) | |
x = batch | |
if device == 'numpy': | |
if isinstance(x, torch.Tensor): | |
x = x.detach().cpu().numpy() | |
elif x is not None: | |
if isinstance(x, np.ndarray): | |
x = torch.from_numpy(x) | |
if torch.is_tensor(x): | |
x = x.to(device, non_blocking=non_blocking) | |
return x | |
to_device = todevice # alias | |
def to_numpy(x): return todevice(x, 'numpy') | |
def to_cpu(x): return todevice(x, 'cpu') | |
def to_cuda(x): return todevice(x, 'cuda') | |
def collate_with_cat(whatever, lists=False): | |
if isinstance(whatever, dict): | |
return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()} | |
elif isinstance(whatever, (tuple, list)): | |
if len(whatever) == 0: | |
return whatever | |
elem = whatever[0] | |
T = type(whatever) | |
if elem is None: | |
return None | |
if isinstance(elem, (bool, float, int, str)): | |
return whatever | |
if isinstance(elem, tuple): | |
return T(collate_with_cat(x, lists=lists) for x in zip(*whatever)) | |
if isinstance(elem, dict): | |
return {k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem} | |
if isinstance(elem, torch.Tensor): | |
return listify(whatever) if lists else torch.cat(whatever) | |
if isinstance(elem, np.ndarray): | |
return listify(whatever) if lists else torch.cat([torch.from_numpy(x) for x in whatever]) | |
# otherwise, we just chain lists | |
return sum(whatever, T()) | |
def listify(elems): | |
return [x for e in elems for x in e] | |