ClientTest / gpt_summary.py
zinoubm's picture
final touches
2f9dcad
raw
history blame
2.52 kB
import os
import gradio as gr
from dotenv import load_dotenv
import openai
from utils import compress
from google_manager.fassade import Fassade
from google.oauth2.credentials import Credentials
from description import DESCRIPTION
import gradio as gr
load_dotenv()
# configuring openai package
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
openai.api_key = OPENAI_API_KEY
def load_prompt(path):
with open(path) as f:
lines = f.readlines()
return "".join(lines)
def chat(passage, max_tokens=256, temprature=0, debug=False):
if debug:
passage = """
A car or automobile is a motor vehicle with wheels. Most definitions of cars say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people (rather than goods).
"""
prompt = load_prompt("summary_prompt.txt").replace("<<SUMMARY>>", passage)
summary = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
)
return summary["choices"][0]["message"]["content"].strip()
def transcribe(audio_file):
audio_file = open(audio_file, "rb")
transcription = openai.Audio.transcribe("whisper-1", audio_file, language="en")
transcription = transcription["text"]
return transcription
def predict(input, request: gr.Request, history=[]):
compress(input)
print("whisper starts")
transcription = transcribe(input)
print("whisper ends")
print("gpt starts")
answer = chat(transcription)
print("gpt ends")
# upload the input/answer to google drive
doc_content = "user:\n" f"{transcription}\n" "\n" "summary:\n" f"{answer}\n"
creds_dict = vars(request.session).get("credentials", {})
if not creds_dict:
raise Exception("Credentials not found in session")
# Create credentials object from dictionary
try:
creds = Credentials.from_authorized_user_info(info=vars(creds_dict))
except Exception as e:
raise Exception(f"Invalid credentials in session with the following error{e}")
Fassade.upload_to_drive(creds, doc_content)
history.append((transcription, answer))
response = history
return response, history
with gr.Blocks() as Ui:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
audio_file.change(predict, [audio_file, state], [chatbot, state])