ClientTest / app.py
zinoubm's picture
Converting the interface to summarization
2ef4f3c
raw
history blame
2.17 kB
import os
import gradio as gr
from dotenv import load_dotenv
import openai
# from utils import serialize
from utils import compress
from description import DESCRIPTION
load_dotenv()
# configuring openai package
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
openai.api_key = OPENAI_API_KEY
def load_prompt(path):
with open(path) as f:
lines = f.readlines()
return "".join(lines)
def chat(passage, max_tokens=256, temprature=0, debug=False):
if debug:
passage = """
A car or automobile is a motor vehicle with wheels. Most definitions of cars say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people (rather than goods).
"""
prompt = load_prompt("summary_prompt.txt").replace("<<SUMMARY>>", passage)
summary = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
)
return summary["choices"][0]["message"]["content"].strip()
# def chat(message, history):
# """
# Sends a request to the OpenAi api based on the user input and the history
# """
# messages = serialize(history)
# messages.append({"role": "user", "content": message})
# completion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# messages=messages,
# )
# return completion["choices"][0]["message"]["content"].strip()
def transcribe(audio_file):
audio_file = open(audio_file, "rb")
transcription = openai.Audio.transcribe("whisper-1", audio_file, language="en")
transcription = transcription["text"]
return transcription
def predict(input, history=[]):
compress(input)
transcription = transcribe(input)
answer = chat(transcription)
history.append((transcription, answer))
response = history
return response, history
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
audio_file.change(predict, [audio_file, state], [chatbot, state])
demo.launch()