Spaces:
Sleeping
Sleeping
update interface to be consistent and allow file uploads
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
|
|
3 |
|
4 |
MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News"
|
5 |
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html"
|
@@ -22,31 +23,55 @@ categories = {
|
|
22 |
|
23 |
def prediction(news):
|
24 |
clasifer = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model, return_all_scores=True)
|
25 |
-
|
26 |
preds = clasifer(news)
|
27 |
-
|
28 |
-
preds_dict = {}
|
29 |
-
for pred in preds[0]:
|
30 |
-
label = categories.get(pred['label'], pred['label'])
|
31 |
-
preds_dict[label] = pred['score']
|
32 |
-
|
33 |
return preds_dict
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
gradio_ui = gr.Interface(
|
36 |
fn=prediction,
|
37 |
title="Setswana News Classification",
|
38 |
description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
|
39 |
-
examples=[
|
40 |
-
['Ka Letsatsi la Aforika, Aforika Borwa e tla be e keteka mabaka a boikemelo, le diketso tse di siameng tse e di dirileng go tokafatsa dikamano tsa yona le dinaga tse dingwe tsa Aforika.'],
|
41 |
-
["Thuto ya Setswana ke nngwe ya dithuto tse di botlhokwa mo sekolong se se tlhamaletseng go ruta bana ba ba mo lefatsheng la Botswana."],
|
42 |
-
["Mo kgweding e e fetileng, dipuisano tsa ditheko tsa dijalo di ile tsa tswelela, ka batho ba rekang le barui ba ba ruileng."],
|
43 |
-
["Masole a Aforika Borwa a ne a ya kwa Mozambique go tlisetsa motlakase morago ga maduo a kgatlha."],
|
44 |
-
],
|
45 |
inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
|
46 |
outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
|
47 |
-
theme="
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
|
51 |
-
|
52 |
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
3 |
+
import pandas as pd
|
4 |
|
5 |
MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News"
|
6 |
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html"
|
|
|
23 |
|
24 |
def prediction(news):
|
25 |
clasifer = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model, return_all_scores=True)
|
|
|
26 |
preds = clasifer(news)
|
27 |
+
preds_dict = {categories.get(pred['label'], pred['label']): pred['score'] for pred in preds[0]}
|
|
|
|
|
|
|
|
|
|
|
28 |
return preds_dict
|
29 |
|
30 |
+
def file_prediction(file):
|
31 |
+
if file.name.endswith('.csv'):
|
32 |
+
df = pd.read_csv(file.name)
|
33 |
+
news_list = df.iloc[:, 0].tolist()
|
34 |
+
else:
|
35 |
+
news_list = [file.read().decode('utf-8')] # Load plain text
|
36 |
+
|
37 |
+
results = []
|
38 |
+
for news in news_list:
|
39 |
+
results.append(prediction(news))
|
40 |
+
|
41 |
+
return results
|
42 |
+
|
43 |
gradio_ui = gr.Interface(
|
44 |
fn=prediction,
|
45 |
title="Setswana News Classification",
|
46 |
description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
|
48 |
outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
|
49 |
+
theme="default",
|
50 |
+
css="""
|
51 |
+
body {
|
52 |
+
background-color: white !important;
|
53 |
+
color: black !important;
|
54 |
+
}
|
55 |
+
.gradio-container {
|
56 |
+
background-color: white !important;
|
57 |
+
color: black !important;
|
58 |
+
}
|
59 |
+
.gr-button {
|
60 |
+
background-color: #f0f0f0 !important;
|
61 |
+
color: black !important;
|
62 |
+
}
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
|
66 |
+
gradio_file_ui = gr.Interface(
|
67 |
+
fn=file_prediction,
|
68 |
+
title="Upload File for Setswana News Classification",
|
69 |
+
description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.",
|
70 |
+
inputs=gr.File(label="Upload text or CSV file"),
|
71 |
+
outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"),
|
72 |
+
theme="default"
|
73 |
)
|
74 |
|
75 |
+
gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"])
|
76 |
|
77 |
+
gradio_combined_ui.launch()
|