File size: 4,979 Bytes
77dffec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3

import requests

HOST = '0.0.0.0:5000'


def generate(prompt, tokens=200):
    request = {'prompt': prompt, 'max_new_tokens': tokens}
    response = requests.post(f'http://{HOST}/api/v1/generate', json=request)

    if response.status_code == 200:
        return response.json()['results'][0]['text']


def model_api(request):
    response = requests.post(f'http://{HOST}/api/v1/model', json=request)
    return response.json()


# print some common settings
def print_basic_model_info(response):
    basic_settings = ['truncation_length', 'instruction_template']
    print("Model: ", response['result']['model_name'])
    print("Lora(s): ", response['result']['lora_names'])
    for setting in basic_settings:
        print(setting, "=", response['result']['shared.settings'][setting])


# model info
def model_info():
    response = model_api({'action': 'info'})
    print_basic_model_info(response)


# simple loader
def model_load(model_name):
    return model_api({'action': 'load', 'model_name': model_name})


# complex loader
def complex_model_load(model):

    def guess_groupsize(model_name):
        if '1024g' in model_name:
            return 1024
        elif '128g' in model_name:
            return 128
        elif '32g' in model_name:
            return 32
        else:
            return -1

    req = {
        'action': 'load',
        'model_name': model,
        'args': {
            'loader': 'AutoGPTQ',

            'bf16': False,
            'load_in_8bit': False,
            'groupsize': 0,
            'wbits': 0,

            # llama.cpp
            'threads': 0,
            'n_batch': 512,
            'no_mmap': False,
            'mlock': False,
            'cache_capacity': None,
            'n_gpu_layers': 0,
            'n_ctx': 2048,

            # RWKV
            'rwkv_strategy': None,
            'rwkv_cuda_on': False,

            # b&b 4-bit
            # 'load_in_4bit': False,
            # 'compute_dtype': 'float16',
            # 'quant_type': 'nf4',
            # 'use_double_quant': False,

            # "cpu": false,
            # "auto_devices": false,
            # "gpu_memory": null,
            # "cpu_memory": null,
            # "disk": false,
            # "disk_cache_dir": "cache",
        },
    }

    model = model.lower()

    if '4bit' in model or 'gptq' in model or 'int4' in model:
        req['args']['wbits'] = 4
        req['args']['groupsize'] = guess_groupsize(model)
    elif '3bit' in model:
        req['args']['wbits'] = 3
        req['args']['groupsize'] = guess_groupsize(model)
    else:
        req['args']['gptq_for_llama'] = False

    if '8bit' in model:
        req['args']['load_in_8bit'] = True
    elif '-hf' in model or 'fp16' in model:
        if '7b' in model:
            req['args']['bf16'] = True  # for 24GB
        elif '13b' in model:
            req['args']['load_in_8bit'] = True  # for 24GB
    elif 'ggml' in model:
        # req['args']['threads'] = 16
        if '7b' in model:
            req['args']['n_gpu_layers'] = 100
        elif '13b' in model:
            req['args']['n_gpu_layers'] = 100
        elif '30b' in model or '33b' in model:
            req['args']['n_gpu_layers'] = 59  # 24GB
        elif '65b' in model:
            req['args']['n_gpu_layers'] = 42  # 24GB
    elif 'rwkv' in model:
        req['args']['rwkv_cuda_on'] = True
        if '14b' in model:
            req['args']['rwkv_strategy'] = 'cuda f16i8'  # 24GB
        else:
            req['args']['rwkv_strategy'] = 'cuda f16'  # 24GB

    return model_api(req)


if __name__ == '__main__':
    for model in model_api({'action': 'list'})['result']:
        try:
            resp = complex_model_load(model)

            if 'error' in resp:
                print(f"❌ {model} FAIL Error: {resp['error']['message']}")
                continue
            else:
                print_basic_model_info(resp)

            ans = generate("0,1,1,2,3,5,8,13,", tokens=2)

            if '21' in ans:
                print(f"βœ… {model} PASS ({ans})")
            else:
                print(f"❌ {model} FAIL ({ans})")

        except Exception as e:
            print(f"❌ {model} FAIL Exception: {repr(e)}")


# 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21.
# Some results below.
""" $ ./model-api-example.py
Model:  4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda
Lora(s):  []
truncation_length = 2048
instruction_template = Alpaca
βœ… 4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda PASS (21)
Model:  4bit_WizardLM-13B-Uncensored-4bit-128g
Lora(s):  []
truncation_length = 2048
instruction_template = WizardLM
βœ… 4bit_WizardLM-13B-Uncensored-4bit-128g PASS (21)
Model:  Aeala_VicUnlocked-alpaca-30b-4bit
Lora(s):  []
truncation_length = 2048
instruction_template = Alpaca
βœ… Aeala_VicUnlocked-alpaca-30b-4bit PASS (21)
Model:  alpaca-30b-4bit
Lora(s):  []
truncation_length = 2048
instruction_template = Alpaca
βœ… alpaca-30b-4bit PASS (21)
"""