File size: 1,912 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/pcpvt_small_20220308-e638c41c.pth'  # noqa

# model settings
backbone_norm_cfg = dict(type='LN')
norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255)
model = dict(
    type='EncoderDecoder',
    data_preprocessor=data_preprocessor,
    backbone=dict(
        type='PCPVT',
        init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
        in_channels=3,
        embed_dims=[64, 128, 320, 512],
        num_heads=[1, 2, 5, 8],
        patch_sizes=[4, 2, 2, 2],
        strides=[4, 2, 2, 2],
        mlp_ratios=[8, 8, 4, 4],
        out_indices=(0, 1, 2, 3),
        qkv_bias=True,
        norm_cfg=backbone_norm_cfg,
        depths=[3, 4, 6, 3],
        sr_ratios=[8, 4, 2, 1],
        norm_after_stage=False,
        drop_rate=0.0,
        attn_drop_rate=0.,
        drop_path_rate=0.2),
    decode_head=dict(
        type='UPerHead',
        in_channels=[64, 128, 320, 512],
        in_index=[0, 1, 2, 3],
        pool_scales=(1, 2, 3, 6),
        channels=512,
        dropout_ratio=0.1,
        num_classes=150,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=320,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=150,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    # model training and testing settings
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))