Spaces:
Runtime error
Runtime error
File size: 4,486 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
Collections:
- Name: EMANet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
README: configs/emanet/README.md
Frameworks:
- PyTorch
Models:
- Name: eemanet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.59
mIoU(ms+flip): 79.44
Config: configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.4
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.1
mIoU(ms+flip): 81.21
Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 6.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.33
mIoU(ms+flip): 80.49
Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 8.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: EMANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 81.0
Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EMANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.1
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json
Paper:
Title: Expectation-Maximization Attention Networks for Semantic Segmentation
URL: https://arxiv.org/abs/1907.13426
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
Framework: PyTorch
|