File size: 4,486 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
Collections:
- Name: EMANet
  License: Apache License 2.0
  Metadata:
    Training Data:
    - Cityscapes
  Paper:
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
    URL: https://arxiv.org/abs/1907.13426
  README: configs/emanet/README.md
  Frameworks:
  - PyTorch
Models:
- Name: eemanet_r50-d8_4xb2-80k_cityscapes-512x1024
  In Collection: EMANet
  Results:
    Task: Semantic Segmentation
    Dataset: Cityscapes
    Metrics:
      mIoU: 77.59
      mIoU(ms+flip): 79.44
  Config: configs/emanet/eemanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
  Metadata:
    Training Data: Cityscapes
    Batch Size: 8
    Architecture:
    - R-50-D8
    - EMANet
    Training Resources: 4x V100 GPUS
    Memory (GB): 5.4
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json
  Paper:
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
    URL: https://arxiv.org/abs/1907.13426
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
  Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-512x1024
  In Collection: EMANet
  Results:
    Task: Semantic Segmentation
    Dataset: Cityscapes
    Metrics:
      mIoU: 79.1
      mIoU(ms+flip): 81.21
  Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
  Metadata:
    Training Data: Cityscapes
    Batch Size: 8
    Architecture:
    - R-101-D8
    - EMANet
    Training Resources: 4x V100 GPUS
    Memory (GB): 6.2
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json
  Paper:
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
    URL: https://arxiv.org/abs/1907.13426
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
  Framework: PyTorch
- Name: emanet_r50-d8_4xb2-80k_cityscapes-769x769
  In Collection: EMANet
  Results:
    Task: Semantic Segmentation
    Dataset: Cityscapes
    Metrics:
      mIoU: 79.33
      mIoU(ms+flip): 80.49
  Config: configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-769x769.py
  Metadata:
    Training Data: Cityscapes
    Batch Size: 8
    Architecture:
    - R-50-D8
    - EMANet
    Training Resources: 4x V100 GPUS
    Memory (GB): 8.9
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json
  Paper:
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
    URL: https://arxiv.org/abs/1907.13426
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
  Framework: PyTorch
- Name: emanet_r101-d8_4xb2-80k_cityscapes-769x769
  In Collection: EMANet
  Results:
    Task: Semantic Segmentation
    Dataset: Cityscapes
    Metrics:
      mIoU: 79.62
      mIoU(ms+flip): 81.0
  Config: configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py
  Metadata:
    Training Data: Cityscapes
    Batch Size: 8
    Architecture:
    - R-101-D8
    - EMANet
    Training Resources: 4x V100 GPUS
    Memory (GB): 10.1
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json
  Paper:
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
    URL: https://arxiv.org/abs/1907.13426
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
  Framework: PyTorch