|
import gradio as gr |
|
import os.path |
|
import numpy as np |
|
from collections import OrderedDict |
|
import torch |
|
import cv2 |
|
from PIL import Image, ImageOps |
|
from utils import utils_logger |
|
from utils import utils_image as util |
|
from models.network_fbcnn import FBCNN as net |
|
import requests |
|
|
|
|
|
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state): |
|
|
|
if is_gray: |
|
n_channels = 1 |
|
model_name = 'fbcnn_gray.pth' |
|
else: |
|
n_channels = 3 |
|
model_name = 'fbcnn_color.pth' |
|
nc = [64,128,256,512] |
|
nb = 4 |
|
|
|
|
|
input_quality = 100 - input_quality |
|
|
|
|
|
model_pool = '/content/FBCNN/model_zoo' |
|
model_path = os.path.join(model_pool, model_name) |
|
if os.path.exists(model_path): |
|
print(f'loading model from {model_path}') |
|
else: |
|
os.makedirs(os.path.dirname(model_path), exist_ok=True) |
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
open(model_path, 'wb').write(r.content) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
|
if (not enable_zoom) or (state[1] is None): |
|
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
model.eval() |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
model = model.to(device) |
|
|
|
test_results = OrderedDict() |
|
test_results['psnr'] = [] |
|
test_results['ssim'] = [] |
|
test_results['psnrb'] = [] |
|
|
|
|
|
|
|
|
|
|
|
if n_channels == 1: |
|
open_cv_image = Image.fromarray(input_img) |
|
open_cv_image = ImageOps.grayscale(open_cv_image) |
|
open_cv_image = np.array(open_cv_image) |
|
img = np.expand_dims(open_cv_image, axis=2) |
|
elif n_channels == 3: |
|
open_cv_image = np.array(input_img) |
|
if open_cv_image.ndim == 2: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) |
|
else: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) |
|
|
|
img_L = util.uint2tensor4(open_cv_image) |
|
img_L = img_L.to(device) |
|
|
|
|
|
|
|
|
|
|
|
img_E,QF = model(img_L) |
|
QF = 1- QF |
|
img_E = util.tensor2single(img_E) |
|
img_E = util.single2uint(img_E) |
|
|
|
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) |
|
img_E,QF = model(img_L, qf_input) |
|
QF = 1- QF |
|
img_E = util.tensor2single(img_E) |
|
img_E = util.single2uint(img_E) |
|
|
|
if img_E.ndim == 3: |
|
img_E = img_E[:, :, [2, 1, 0]] |
|
if (state[1] is not None) and enable_zoom: |
|
img_E = state[1] |
|
out_img = Image.fromarray(img_E) |
|
out_img_w, out_img_h = out_img.size |
|
zoom = zoom/100 |
|
x_shift = x_shift/100 |
|
y_shift = y_shift/100 |
|
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom |
|
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift) |
|
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift) |
|
if (state[0] is None) or not enable_zoom: |
|
in_img = Image.fromarray(input_img) |
|
state[0] = input_img |
|
else: |
|
in_img = Image.fromarray(state[0]) |
|
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) |
|
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) |
|
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) |
|
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) |
|
|
|
return img_E, in_img, out_img, [state[0],img_E] |
|
|
|
interface = gr.Interface( |
|
fn = inference, |
|
inputs = [gr.inputs.Image(), |
|
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"), |
|
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = more JPEG artifact removal)"), |
|
gr.inputs.Checkbox(default=False, label="Edit Zoom preview \nThis is optional. " |
|
"Check this after the image result is loaded to edit zoom parameters\n" |
|
"without processing the input image."), |
|
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image \n" |
|
"Use this to see the image quality up close \n" |
|
"100 = original size"), |
|
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift \n" |
|
"Increase to shift to the right"), |
|
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift \n" |
|
"Increase to shift downwards"), |
|
gr.inputs.State(default=[None,None]) |
|
], |
|
outputs = [gr.outputs.Image(label="Result"), |
|
gr.outputs.Image(label="Before:"), |
|
gr.outputs.Image(label="After:"), |
|
"state"] |
|
).launch(enable_queue=True,cache_examples=True) |