|
import gradio as gr |
|
import os.path |
|
import numpy as np |
|
from collections import OrderedDict |
|
import torch |
|
import cv2 |
|
from PIL import Image, ImageOps |
|
import utils_image as util |
|
from network_fbcnn import FBCNN as net |
|
import requests |
|
|
|
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']: |
|
if os.path.exists(model_path): |
|
print(f'{model_path} exists.') |
|
else: |
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
open(model_path, 'wb').write(r.content) |
|
|
|
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state): |
|
|
|
if is_gray: |
|
n_channels = 1 |
|
model_name = 'fbcnn_gray.pth' |
|
else: |
|
n_channels = 3 |
|
model_name = 'fbcnn_color.pth' |
|
nc = [64,128,256,512] |
|
nb = 4 |
|
|
|
|
|
input_quality = 100 - input_quality |
|
|
|
model_path = model_name |
|
|
|
if os.path.exists(model_path): |
|
print(f'loading model from {model_path}') |
|
else: |
|
os.makedirs(os.path.dirname(model_path), exist_ok=True) |
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
open(model_path, 'wb').write(r.content) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
|
if (not enable_zoom) or (state[1] is None): |
|
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
model.eval() |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
model = model.to(device) |
|
|
|
test_results = OrderedDict() |
|
test_results['psnr'] = [] |
|
test_results['ssim'] = [] |
|
test_results['psnrb'] = [] |
|
|
|
|
|
|
|
|
|
|
|
if n_channels == 1: |
|
open_cv_image = Image.fromarray(input_img) |
|
open_cv_image = ImageOps.grayscale(open_cv_image) |
|
open_cv_image = np.array(open_cv_image) |
|
img = np.expand_dims(open_cv_image, axis=2) |
|
elif n_channels == 3: |
|
open_cv_image = np.array(input_img) |
|
if open_cv_image.ndim == 2: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) |
|
else: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) |
|
|
|
img_L = util.uint2tensor4(open_cv_image) |
|
img_L = img_L.to(device) |
|
|
|
|
|
|
|
|
|
|
|
img_E,QF = model(img_L) |
|
QF = 1- QF |
|
img_E = util.tensor2single(img_E) |
|
img_E = util.single2uint(img_E) |
|
|
|
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) |
|
img_E,QF = model(img_L, qf_input) |
|
QF = 1- QF |
|
img_E = util.tensor2single(img_E) |
|
img_E = util.single2uint(img_E) |
|
|
|
if img_E.ndim == 3: |
|
img_E = img_E[:, :, [2, 1, 0]] |
|
|
|
print("--inference finished") |
|
if (state[1] is not None) and enable_zoom: |
|
img_E = state[1] |
|
out_img = Image.fromarray(img_E) |
|
out_img_w, out_img_h = out_img.size |
|
zoom = zoom/100 |
|
x_shift = x_shift/100 |
|
y_shift = y_shift/100 |
|
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom |
|
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift) |
|
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift) |
|
if (state[0] is None) or not enable_zoom: |
|
in_img = Image.fromarray(input_img) |
|
state[0] = input_img |
|
else: |
|
in_img = Image.fromarray(state[0]) |
|
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) |
|
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) |
|
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) |
|
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) |
|
|
|
return img_E, in_img, out_img, [state[0],img_E] |
|
|
|
gr.Interface( |
|
fn = inference, |
|
inputs = [gr.inputs.Image(label="Input Image"), |
|
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"), |
|
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"), |
|
gr.inputs.Checkbox(default=False, label="Edit Zoom preview (This is optional. " |
|
"After the image result is loaded, check this to edit zoom parameters " |
|
"so that the input image will not be processed when the submit button is pressed.)"), |
|
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image " |
|
"(Use this to see the image quality up close. " |
|
"100 = original size)"), |
|
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift " |
|
"(Increase to shift to the right)"), |
|
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift " |
|
"(Increase to shift downwards)"), |
|
gr.inputs.State(default=[None,None], label="\t") |
|
], |
|
outputs = [gr.outputs.Image(label="Result"), |
|
gr.outputs.Image(label="Before:"), |
|
gr.outputs.Image(label="After:"), |
|
"state"], |
|
examples = [["doraemon.jpg",False,60,False,42,50,50], |
|
["tomandjerry.jpg",False,60,False,40,57,44], |
|
["somepanda.jpg",True,100,False,30,8,24], |
|
["cemetry.jpg",False,70,False,20,76,62], |
|
["michelangelo_david.jpg",True,30,False,12,53,27], |
|
["elon_musk.jpg",False,45,False,15,33,30], |
|
["text.jpg",True,70,False,50,11,29]], |
|
title = "JPEG Artifacts Removal [FBCNN]", |
|
description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, " |
|
"or click one of the examples to load them. Check out the paper and the original GitHub repo at the link below. " |
|
"JPEG artifacts are noticeable distortion of images caused by JPEG lossy compression. " |
|
"This is not a super resolution AI but a JPEG compression artifact remover.", |
|
article = "<p style='text-align: center;'><a href='https://github.com/jiaxi-jiang/FBCNN'>FBCNN GitHub Repo</a><br>" |
|
"<a href='https://arxiv.org/abs/2109.14573'>Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)</a></p>", |
|
allow_flagging="never" |
|
).launch(enable_queue=True) |