Find3D / Pointcept /configs /modelnet40 /cls-spunet-v1m1-0-base.py
ziqima's picture
initial commit
4893ce0
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 16 # bs: total bs in all gpus
# batch_size_val = 8
empty_cache = False
enable_amp = False
# model settings
model = dict(
type="DefaultClassifier",
num_classes=40,
backbone_embed_dim=256,
backbone=dict(
type="SpUNet-v1m1",
in_channels=6,
num_classes=0,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
cls_mode=True,
),
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)],
)
# scheduler settings
epoch = 200
optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type="MultiStepLR", milestones=[0.6, 0.8], gamma=0.1)
# dataset settings
dataset_type = "ModelNetDataset"
data_root = "data/modelnet40_normal_resampled"
cache_data = False
class_names = [
"airplane",
"bathtub",
"bed",
"bench",
"bookshelf",
"bottle",
"bowl",
"car",
"chair",
"cone",
"cup",
"curtain",
"desk",
"door",
"dresser",
"flower_pot",
"glass_box",
"guitar",
"keyboard",
"lamp",
"laptop",
"mantel",
"monitor",
"night_stand",
"person",
"piano",
"plant",
"radio",
"range_hood",
"sink",
"sofa",
"stairs",
"stool",
"table",
"tent",
"toilet",
"tv_stand",
"vase",
"wardrobe",
"xbox",
]
data = dict(
num_classes=40,
ignore_index=-1,
names=class_names,
train=dict(
type=dataset_type,
split="train",
data_root=data_root,
class_names=class_names,
transform=[
dict(type="NormalizeCoord"),
# dict(type="CenterShift", apply_z=True),
# dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1/24, 1/24], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-1/24, 1/24], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
dict(type="RandomShift", shift=((-0.2, 0.2), (-0.2, 0.2), (-0.2, 0.2))),
# dict(type="RandomFlip", p=0.5),
# dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.01,
hash_type="fnv",
mode="train",
keys=("coord", "normal"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=10000, mode="random"),
# dict(type="CenterShift", apply_z=True),
dict(type="ShufflePoint"),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "category"),
feat_keys=["coord", "normal"],
),
],
test_mode=False,
),
val=dict(
type=dataset_type,
split="test",
data_root=data_root,
class_names=class_names,
transform=[
dict(type="NormalizeCoord"),
dict(
type="GridSample",
grid_size=0.01,
hash_type="fnv",
mode="train",
keys=("coord", "normal"),
return_grid_coord=True,
),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "category"),
feat_keys=["coord", "normal"],
),
],
test_mode=False,
),
test=dict(
type=dataset_type,
split="test",
data_root=data_root,
class_names=class_names,
transform=[
dict(type="NormalizeCoord"),
dict(
type="GridSample",
grid_size=0.01,
hash_type="fnv",
mode="train",
keys=("coord", "normal"),
return_grid_coord=True,
),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "category"),
feat_keys=["coord", "normal"],
),
],
test_mode=True,
),
)
# hooks
hooks = [
dict(type="CheckpointLoader"),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(type="ClsEvaluator"),
dict(type="CheckpointSaver", save_freq=None),
]
# tester
test = dict(type="ClsTester")