Spaces:
Running
on
Zero
Running
on
Zero
_base_ = [ | |
"../_base_/default_runtime.py", | |
"../_base_/dataset/scannetpp.py", | |
] | |
# misc custom setting | |
batch_size = 24 # bs: total bs in all gpus | |
num_worker = 48 | |
mix_prob = 0.8 | |
empty_cache = False | |
enable_amp = True | |
find_unused_parameters = True | |
# trainer | |
train = dict( | |
type="MultiDatasetTrainer", | |
) | |
# model settings | |
model = dict( | |
type="PPT-v1m2", | |
backbone=dict( | |
type="PT-v3m1", | |
in_channels=6, | |
order=("z", "z-trans", "hilbert", "hilbert-trans"), | |
stride=(2, 2, 2, 2), | |
enc_depths=(3, 3, 3, 6, 3), | |
enc_channels=(48, 96, 192, 384, 512), | |
enc_num_head=(3, 6, 12, 24, 32), | |
enc_patch_size=(1024, 1024, 1024, 1024, 1024), | |
dec_depths=(3, 3, 3, 3), | |
dec_channels=(64, 96, 192, 384), | |
dec_num_head=(4, 6, 12, 24), | |
dec_patch_size=(1024, 1024, 1024, 1024), | |
mlp_ratio=4, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
drop_path=0.3, | |
shuffle_orders=True, | |
pre_norm=True, | |
enable_rpe=False, | |
enable_flash=True, | |
upcast_attention=False, | |
upcast_softmax=False, | |
cls_mode=False, | |
pdnorm_bn=True, | |
pdnorm_ln=True, | |
pdnorm_decouple=True, | |
pdnorm_adaptive=False, | |
pdnorm_affine=True, | |
pdnorm_conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D"), | |
), | |
criteria=[ | |
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), | |
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1), | |
], | |
backbone_out_channels=64, | |
context_channels=256, | |
conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D"), | |
num_classes=(200, 100, 13, 25), | |
) | |
# scheduler settings | |
epoch = 100 | |
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05) | |
scheduler = dict( | |
type="OneCycleLR", | |
max_lr=[0.005, 0.0005], | |
pct_start=0.05, | |
anneal_strategy="cos", | |
div_factor=10.0, | |
final_div_factor=1000.0, | |
) | |
param_dicts = [dict(keyword="block", lr=0.0005)] | |
# dataset settings | |
data = dict( | |
num_classes=100, | |
ignore_index=-1, | |
train=dict( | |
type="ConcatDataset", | |
datasets=[ | |
# Structured3D | |
dict( | |
type="Structured3DDataset", | |
split=["train", "val", "test"], | |
data_root="data/structured3d", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="RandomDropout", | |
dropout_ratio=0.2, | |
dropout_application_ratio=0.2, | |
), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict( | |
type="RandomRotate", | |
angle=[-1, 1], | |
axis="z", | |
center=[0, 0, 0], | |
p=0.5, | |
), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict( | |
type="ElasticDistortion", | |
distortion_params=[[0.2, 0.4], [0.8, 1.6]], | |
), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
), | |
dict(type="SphereCrop", sample_rate=0.8, mode="random"), | |
dict(type="SphereCrop", point_max=204800, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
# dict(type="ShufflePoint"), | |
dict(type="Add", keys_dict={"condition": "Structured3D"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
loop=2, # sampling weight | |
), | |
# ScanNet | |
dict( | |
type="ScanNet200Dataset", | |
split=["train", "val"], | |
data_root="data/scannet", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="RandomDropout", | |
dropout_ratio=0.2, | |
dropout_application_ratio=0.2, | |
), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict( | |
type="RandomRotate", | |
angle=[-1, 1], | |
axis="z", | |
center=[0, 0, 0], | |
p=0.5, | |
), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict( | |
type="ElasticDistortion", | |
distortion_params=[[0.2, 0.4], [0.8, 1.6]], | |
), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
), | |
dict(type="SphereCrop", point_max=204800, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ShufflePoint"), | |
dict(type="Add", keys_dict={"condition": "ScanNet"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
loop=1, # sampling weight | |
), | |
# S3DIS | |
# dict( | |
# type="S3DISDataset", | |
# split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"), | |
# data_root="data/s3dis", | |
# transform=[ | |
# dict(type="CenterShift", apply_z=True), | |
# dict( | |
# type="RandomDropout", | |
# dropout_ratio=0.2, | |
# dropout_application_ratio=0.2, | |
# ), | |
# # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
# dict( | |
# type="RandomRotate", | |
# angle=[-1, 1], | |
# axis="z", | |
# center=[0, 0, 0], | |
# p=0.5, | |
# ), | |
# dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
# dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
# dict(type="RandomScale", scale=[0.9, 1.1]), | |
# # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
# dict(type="RandomFlip", p=0.5), | |
# dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
# dict( | |
# type="ElasticDistortion", | |
# distortion_params=[[0.2, 0.4], [0.8, 1.6]], | |
# ), | |
# dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
# dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
# dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# # dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
# dict( | |
# type="GridSample", | |
# grid_size=0.02, | |
# hash_type="fnv", | |
# mode="train", | |
# return_grid_coord=True, | |
# ), | |
# dict(type="SphereCrop", sample_rate=0.6, mode="random"), | |
# dict(type="SphereCrop", point_max=204800, mode="random"), | |
# dict(type="CenterShift", apply_z=False), | |
# dict(type="NormalizeColor"), | |
# dict(type="ShufflePoint"), | |
# dict(type="Add", keys_dict={"condition": "S3DIS"}), | |
# dict(type="ToTensor"), | |
# dict( | |
# type="Collect", | |
# keys=("coord", "grid_coord", "segment", "condition"), | |
# feat_keys=("color", "normal"), | |
# ), | |
# ], | |
# test_mode=False, | |
# loop=1, # sampling weight | |
# ), | |
dict( | |
type="ScanNetPPDataset", | |
split="train_grid1mm_chunk6x6_stride3x3", | |
data_root="data/scannetpp", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="RandomDropout", | |
dropout_ratio=0.2, | |
dropout_application_ratio=0.2, | |
), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict( | |
type="RandomRotate", | |
angle=[-1, 1], | |
axis="z", | |
center=[0, 0, 0], | |
p=0.5, | |
), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict( | |
type="ElasticDistortion", | |
distortion_params=[[0.2, 0.4], [0.8, 1.6]], | |
), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
), | |
dict(type="SphereCrop", point_max=204800, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
# dict(type="ShufflePoint"), | |
dict(type="Add", keys_dict={"condition": "ScanNet++"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
), | |
], | |
), | |
val=dict( | |
type="ScanNetPPDataset", | |
split="val", | |
data_root="data/scannetpp", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ToTensor"), | |
dict(type="Add", keys_dict={"condition": "ScanNet++"}), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
), | |
test=dict( | |
type="ScanNetPPDataset", | |
split="val", | |
data_root="data/scannetpp", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="NormalizeColor"), | |
dict(type="Copy", keys_dict={"segment": "origin_segment"}), | |
dict( | |
type="GridSample", | |
grid_size=0.01, | |
hash_type="fnv", | |
mode="train", | |
keys=("coord", "color", "normal", "segment"), | |
return_inverse=True, | |
), | |
], | |
test_mode=True, | |
test_cfg=dict( | |
voxelize=dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="test", | |
keys=("coord", "color", "normal"), | |
return_grid_coord=True, | |
), | |
crop=None, | |
post_transform=[ | |
dict(type="CenterShift", apply_z=False), | |
dict(type="Add", keys_dict={"condition": "ScanNet++"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "index", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
aug_transform=[ | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[dict(type="RandomFlip", p=1)], | |
], | |
), | |
), | |
) | |