Spaces:
Running
on
Zero
Running
on
Zero
_base_ = ["../_base_/default_runtime.py"] | |
# misc custom setting | |
batch_size = 12 # bs: total bs in all gpus | |
mix_prob = 0.8 | |
empty_cache = False | |
enable_amp = True | |
# model settings | |
model = dict( | |
type="DefaultSegmentor", | |
backbone=dict( | |
type="SpUNet-v1m1", | |
in_channels=4, | |
num_classes=22, | |
channels=(32, 64, 128, 256, 256, 128, 96, 96), | |
layers=(2, 3, 4, 6, 2, 2, 2, 2), | |
), | |
criteria=[ | |
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), | |
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1), | |
], | |
) | |
# scheduler settings | |
epoch = 50 | |
eval_epoch = 50 | |
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005) | |
scheduler = dict( | |
type="OneCycleLR", | |
max_lr=optimizer["lr"], | |
pct_start=0.04, | |
anneal_strategy="cos", | |
div_factor=10.0, | |
final_div_factor=100.0, | |
) | |
# dataset settings | |
dataset_type = "WaymoDataset" | |
data_root = "data/waymo" | |
ignore_index = -1 | |
names = [ | |
"Car", | |
"Truck", | |
"Bus", | |
# Other small vehicles (e.g. pedicab) and large vehicles (e.g. construction vehicles, RV, limo, tram). | |
"Other Vehicle", | |
"Motorcyclist", | |
"Bicyclist", | |
"Pedestrian", | |
"Sign", | |
"Traffic Light", | |
# Lamp post, traffic sign pole etc. | |
"Pole", | |
# Construction cone/pole. | |
"Construction Cone", | |
"Bicycle", | |
"Motorcycle", | |
"Building", | |
# Bushes, tree branches, tall grasses, flowers etc. | |
"Vegetation", | |
"Tree Trunk", | |
# Curb on the edge of roads. This does not include road boundaries if there’s no curb. | |
"Curb", | |
# Surface a vehicle could drive on. This includes the driveway connecting | |
# parking lot and road over a section of sidewalk. | |
"Road", | |
# Marking on the road that’s specifically for defining lanes such as | |
# single/double white/yellow lines. | |
"Lane Marker", | |
# Marking on the road other than lane markers, bumps, cateyes, railtracks etc. | |
"Other Ground", | |
# Most horizontal surface that’s not drivable, e.g. grassy hill, pedestrian walkway stairs etc. | |
"Walkable", | |
# Nicely paved walkable surface when pedestrians most likely to walk on. | |
"Sidewalk", | |
] | |
data = dict( | |
num_classes=22, | |
ignore_index=ignore_index, | |
names=names, | |
train=dict( | |
type=dataset_type, | |
split="training", | |
data_root=data_root, | |
transform=[ | |
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5), | |
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5), | |
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
dict( | |
type="GridSample", | |
grid_size=0.05, | |
hash_type="fnv", | |
mode="train", | |
keys=("coord", "strength", "segment"), | |
return_grid_coord=True, | |
), | |
# dict(type="SphereCrop", point_max=1000000, mode="random"), | |
# dict(type="CenterShift", apply_z=False), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment"), | |
feat_keys=("coord", "strength"), | |
), | |
], | |
test_mode=False, | |
ignore_index=ignore_index, | |
), | |
val=dict( | |
type=dataset_type, | |
split="validation", | |
data_root=data_root, | |
transform=[ | |
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)), | |
dict( | |
type="GridSample", | |
grid_size=0.05, | |
hash_type="fnv", | |
mode="train", | |
keys=("coord", "strength", "segment"), | |
return_grid_coord=True, | |
), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment"), | |
feat_keys=("coord", "strength"), | |
), | |
], | |
test_mode=False, | |
ignore_index=ignore_index, | |
), | |
test=dict( | |
type=dataset_type, | |
split="validation", | |
data_root=data_root, | |
transform=[ | |
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)), | |
], | |
test_mode=True, | |
test_cfg=dict( | |
voxelize=dict( | |
type="GridSample", | |
grid_size=0.05, | |
hash_type="fnv", | |
mode="test", | |
return_grid_coord=True, | |
keys=("coord", "strength"), | |
), | |
crop=None, | |
post_transform=[ | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "index"), | |
feat_keys=("coord", "strength"), | |
), | |
], | |
aug_transform=[ | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
], | |
), | |
ignore_index=ignore_index, | |
), | |
) | |