File size: 10,416 Bytes
8655a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import dataclasses
import gc
import glob
import os

from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from huggingface_hub import snapshot_download
import torch
from torch import Tensor
from torch.nn import functional as F
import torch.nn as nn
from tqdm import tqdm
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    AutoModel,
    AutoModelForSeq2SeqLM,
)


@dataclasses.dataclass
class CompressionConfig:
    """Group-wise quantization."""

    num_bits: int
    group_size: int
    group_dim: int
    symmetric: bool
    enabled: bool = True


default_compression_config = CompressionConfig(
    num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True
)


class CLinear(nn.Module):
    """Compressed Linear Layer."""

    def __init__(self, weight=None, bias=None, device=None):
        super().__init__()
        if weight is None:
            self.weight = None
        elif isinstance(weight, Tensor):
            self.weight = compress(weight.data.to(device), default_compression_config)
        else:
            self.weight = weight
        self.bias = bias

    def forward(self, input: Tensor) -> Tensor:
        weight = decompress(self.weight, default_compression_config)
        if self.bias is None:
            return F.linear(input.to(weight.dtype), weight)
        return F.linear(input.to(weight.dtype), weight, self.bias.to(weight.dtype))


def compress_module(module, target_device):
    for attr_str in dir(module):
        target_attr = getattr(module, attr_str)
        if type(target_attr) == torch.nn.Linear:
            setattr(
                module,
                attr_str,
                CLinear(target_attr.weight, target_attr.bias, target_device),
            )
    for name, child in module.named_children():
        compress_module(child, target_device)


def get_compressed_list(module, prefix=""):
    compressed_list = []
    for attr_str in dir(module):
        target_attr = getattr(module, attr_str)
        if type(target_attr) == torch.nn.Linear:
            full_name = (
                f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight"
            )
            compressed_list.append(full_name)
    for name, child in module.named_children():
        child_prefix = f"{prefix}.{name}" if prefix else name
        for each in get_compressed_list(child, child_prefix):
            compressed_list.append(each)
    return compressed_list


def apply_compressed_weight(module, compressed_state_dict, target_device, prefix=""):
    for attr_str in dir(module):
        target_attr = getattr(module, attr_str)
        if type(target_attr) == torch.nn.Linear:
            full_name = (
                f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight"
            )
            setattr(
                module,
                attr_str,
                CLinear(
                    compressed_state_dict[full_name], target_attr.bias, target_device
                ),
            )
    for name, child in module.named_children():
        child_prefix = f"{prefix}.{name}" if prefix else name
        apply_compressed_weight(
            child, compressed_state_dict, target_device, child_prefix
        )


def load_compress_model(model_path, device, torch_dtype, use_fast, revision="main"):
    # partially load model
    # `use_fast=True`` is not supported for some models.
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            model_path, use_fast=use_fast, revision=revision, trust_remote_code=True
        )
    except TypeError:
        tokenizer = AutoTokenizer.from_pretrained(
            model_path, use_fast=~use_fast, revision=revision, trust_remote_code=True
        )
    with init_empty_weights():
        # `trust_remote_code` should be set as `True` for both AutoConfig and AutoModel
        config = AutoConfig.from_pretrained(
            model_path,
            low_cpu_mem_usage=True,
            torch_dtype=torch_dtype,
            trust_remote_code=True,
            revision=revision,
        )
        # some models are loaded by AutoModel but not AutoModelForCausalLM,
        # such as chatglm, chatglm2
        try:
            # google/flan-* models are based on an AutoModelForSeq2SeqLM.
            if "T5Config" in str(type(config)):
                model = AutoModelForSeq2SeqLM.from_config(
                    config, trust_remote_code=True
                )
            else:
                model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
        except NameError:
            model = AutoModel.from_config(config, trust_remote_code=True)
        linear_weights = get_compressed_list(model)
    if os.path.exists(model_path):
        # `model_path` is a local folder
        base_pattern = os.path.join(model_path, "pytorch_model*.bin")
    else:
        # `model_path` is a cached Hugging Face repo
        # We don't necessarily need to download the model' repo again if there is a cache.
        # So check the default huggingface cache first.
        model_path_temp = os.path.join(
            os.path.expanduser("~"),
            ".cache/huggingface/hub",
            "models--" + model_path.replace("/", "--"),
            "snapshots/",
        )
        downloaded = False
        if os.path.exists(model_path_temp):
            temp_last_dir = os.listdir(model_path_temp)[-1]
            model_path_temp = os.path.join(model_path_temp, temp_last_dir)
            base_pattern = os.path.join(model_path_temp, "pytorch_model*.bin")
            files = glob.glob(base_pattern)
            if len(files) > 0:
                downloaded = True

        if downloaded:
            model_path = model_path_temp
        else:
            model_path = snapshot_download(model_path, revision=revision)
        base_pattern = os.path.join(model_path, "pytorch_model*.bin")

    files = glob.glob(base_pattern)
    use_safetensors = False
    if len(files) == 0:
        base_pattern = os.path.join(model_path, "*.safetensors")
        files = glob.glob(base_pattern)
        use_safetensors = True
    if len(files) == 0:
        raise ValueError(
            f"Cannot find any model weight files. "
            f"Please check your (cached) weight path: {model_path}"
        )

    compressed_state_dict = {}
    if use_safetensors:
        from safetensors.torch import load_file
    for filename in tqdm(files):
        if use_safetensors:
            tmp_state_dict = load_file(filename)
        else:
            tmp_state_dict = torch.load(
                filename, map_location=lambda storage, loc: storage
            )
        for name in tmp_state_dict:
            if name in linear_weights:
                tensor = tmp_state_dict[name].to(device, dtype=torch_dtype)
                compressed_state_dict[name] = compress(
                    tensor, default_compression_config
                )
            else:
                compressed_state_dict[name] = tmp_state_dict[name].to(
                    device, dtype=torch_dtype
                )
            tmp_state_dict[name] = None
            tensor = None
            gc.collect()
            torch.cuda.empty_cache()
            if device == "xpu":
                torch.xpu.empty_cache()
            if device == "npu":
                torch.npu.empty_cache()

    for name in model.state_dict():
        if name not in linear_weights:
            set_module_tensor_to_device(
                model, name, device, value=compressed_state_dict[name]
            )
    apply_compressed_weight(model, compressed_state_dict, device)

    if torch_dtype == torch.float16:
        model.half()
    model.to(device)
    model.eval()

    return model, tokenizer


def compress(tensor, config):
    """Simulate group-wise quantization."""
    if not config.enabled:
        return tensor

    group_size, num_bits, group_dim, symmetric = (
        config.group_size,
        config.num_bits,
        config.group_dim,
        config.symmetric,
    )
    assert num_bits <= 8

    original_shape = tensor.shape
    num_groups = (original_shape[group_dim] + group_size - 1) // group_size
    new_shape = (
        original_shape[:group_dim]
        + (num_groups, group_size)
        + original_shape[group_dim + 1 :]
    )

    # Pad
    pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
    if pad_len != 0:
        pad_shape = (
            original_shape[:group_dim] + (pad_len,) + original_shape[group_dim + 1 :]
        )
        tensor = torch.cat(
            [tensor, torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
            dim=group_dim,
        )
    data = tensor.view(new_shape)

    # Quantize
    if symmetric:
        B = 2 ** (num_bits - 1) - 1
        scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0]
        data = data * scale
        data = data.clamp_(-B, B).round_().to(torch.int8)
        return data, scale, original_shape
    else:
        B = 2**num_bits - 1
        mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0]
        mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0]

        scale = B / (mx - mn)
        data = data - mn
        data.mul_(scale)

        data = data.clamp_(0, B).round_().to(torch.uint8)
        return data, mn, scale, original_shape


def decompress(packed_data, config):
    """Simulate group-wise dequantization."""
    if not config.enabled:
        return packed_data

    group_size, num_bits, group_dim, symmetric = (
        config.group_size,
        config.num_bits,
        config.group_dim,
        config.symmetric,
    )

    # Dequantize
    if symmetric:
        data, scale, original_shape = packed_data
        data = data / scale
    else:
        data, mn, scale, original_shape = packed_data
        data = data / scale
        data.add_(mn)

    # Unpad
    pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
    if pad_len:
        padded_original_shape = (
            original_shape[:group_dim]
            + (original_shape[group_dim] + pad_len,)
            + original_shape[group_dim + 1 :]
        )
        data = data.reshape(padded_original_shape)
        indices = [slice(0, x) for x in original_shape]
        return data[indices].contiguous()
    else:
        return data.view(original_shape)