Spaces:
Runtime error
Runtime error
File size: 11,470 Bytes
8655a4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright:
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import json
import math
import jsonlines
import pathlib
from multiprocessing import Pool
from typing import Dict, Optional, Sequence
import numpy as np
import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother
from fastchat.conversation import SeparatorStyle
from fastchat.model.model_adapter import get_conversation_template
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def apply_prompt_template(sources, systems=None):
conv = get_conversation_template("vicuna")
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
if systems and systems[i]:
conv.set_system_message(systems[i])
prompt = conv.get_prompt()
conversations.append(prompt)
return conversations, conv
def tokenize_conversations(conversations, tokenizer):
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
return input_ids, targets
def mask_targets(conversations, targets, tokenizer, conv):
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split(conv.sep2)
cur_len = 0
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
turn_len = len(tokenizer(turn + conv.sep2).input_ids)
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
target[cur_len:] = IGNORE_TOKEN_ID
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return targets
def preprocess(sources, tokenizer: transformers.PreTrainedTokenizer, **kwargs) -> Dict:
systems = None if not kwargs else kwargs.get("systems", None)
# If the data volume is small, process it directly in the main thread
if len(sources) <= 1000:
conversations, conv = apply_prompt_template(sources, systems)
input_ids, targets = tokenize_conversations(conversations, tokenizer)
targets = mask_targets(conversations, targets, tokenizer, conv)
else: # If the data volume is large, use multithreading for processing
with Pool() as p:
conversations, conv = p.apply_async(
apply_prompt_template, (sources, systems)
).get()
input_ids, targets = p.apply_async(
tokenize_conversations, (conversations, tokenizer)
).get()
targets = p.apply_async(
mask_targets, (conversations, targets, tokenizer, conv)
).get()
p.close()
p.join()
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
systems = [example.get("system", "") for example in raw_data]
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, systems=systems)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
rank0_print("Formatting inputs...Skip in lazy mode")
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess(
[self.raw_data[i]["conversations"]],
self.tokenizer,
systems=[self.raw_data[i].get("system", "")],
)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args, train_ratio=0.98
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_ratio = min(train_ratio, 1.0)
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
data_path = data_args.data_path
if data_path.endswith(".json"):
raw_data = json.load(open(data_path, "r"))
elif data_path.endswith(".jsonl"):
with jsonlines.open(data_path, mode="r") as reader:
raw_data = [item for item in reader]
# Split train/test
np.random.seed(0)
perm = np.random.permutation(len(raw_data))
split = int(len(perm) * train_ratio)
train_indices = perm[:split]
if train_ratio < 1:
eval_indices = perm[split:]
else:
# if train_ratio==1, we use 5% of data as eval data, make sure trainer will not throw error when eval data is empty
eval_indices = perm[-int(len(perm) * 0.05) :]
train_raw_data = [raw_data[i] for i in train_indices]
eval_raw_data = [raw_data[i] for i in eval_indices]
rank0_print(f"#train {len(train_raw_data)}, #eval {len(eval_raw_data)}")
train_dataset = dataset_cls(train_raw_data, tokenizer=tokenizer)
eval_dataset = dataset_cls(eval_raw_data, tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=True,
cache_dir=training_args.cache_dir,
)
# Set RoPE scaling factor
orig_ctx_len = getattr(config, "max_position_embeddings", None)
if orig_ctx_len and training_args.model_max_length > orig_ctx_len:
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
config.use_cache = False
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
trust_remote_code=True,
cache_dir=training_args.cache_dir,
)
# Tie the weights
model.tie_weights()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
config=config,
trust_remote_code=True,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
# NOTE: if the token_id exceed the vocab_size will cause failing in training process! we need add special config and resize the embedding size!
tokenizer.pad_token = tokenizer.unk_token
print(f"tokens len: {len(tokenizer)}")
model.resize_token_embeddings(len(tokenizer))
data_module = make_supervised_data_module(
tokenizer=tokenizer, train_ratio=0.98, data_args=data_args
)
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()
|