File size: 7,803 Bytes
8655a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Usage: deepspeed train_lora.py --deepspeed <$PATH_TO_DEEPSPEED_CONFIG>

# Adapted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from dataclasses import dataclass, field
import logging
import pathlib
import typing
import os

from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import transformers
from transformers import Trainer, BitsAndBytesConfig, deepspeed
import torch

from fastchat.train.train import (
    DataArguments,
    ModelArguments,
    make_supervised_data_module,
)

from fastchat.train.llama_flash_attn_monkey_patch import (
    replace_llama_attn_with_flash_attn,
)


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: typing.Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    flash_attn: bool = False


@dataclass
class LoraArguments:
    lora_r: int = 8
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_target_modules: typing.List[str] = field(
        default_factory=lambda: ["q_proj", "v_proj"]
    )
    lora_weight_path: str = ""
    lora_bias: str = "none"
    q_lora: bool = False


def maybe_zero_3(param):
    if hasattr(param, "ds_id"):
        assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
    return to_return


def train():
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments, LoraArguments)
    )
    (
        model_args,
        data_args,
        training_args,
        lora_args,
    ) = parser.parse_args_into_dataclasses()

    if training_args.flash_attn:
        replace_llama_attn_with_flash_attn()

    device_map = None
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if lora_args.q_lora:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
        if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
            logging.warning(
                "FSDP and ZeRO3 are both currently incompatible with QLoRA."
            )

    compute_dtype = (
        torch.float16
        if training_args.fp16
        else (torch.bfloat16 if training_args.bf16 else torch.float32)
    )

    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        device_map=device_map,
        quantization_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=compute_dtype,
        )
        if lora_args.q_lora
        else None,
    )
    lora_config = LoraConfig(
        r=lora_args.lora_r,
        lora_alpha=lora_args.lora_alpha,
        target_modules=lora_args.lora_target_modules,
        lora_dropout=lora_args.lora_dropout,
        bias=lora_args.lora_bias,
        task_type="CAUSAL_LM",
    )

    if lora_args.q_lora:
        model = prepare_model_for_kbit_training(
            model, use_gradient_checkpointing=training_args.gradient_checkpointing
        )
        if not ddp and torch.cuda.device_count() > 1:
            # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
            model.is_parallelizable = True
            model.model_parallel = True

    model = get_peft_model(model, lora_config)
    if training_args.flash_attn:
        for name, module in model.named_modules():
            if "norm" in name:
                module = module.to(compute_dtype)
            if "lm_head" in name or "embed_tokens" in name:
                if hasattr(module, "weight"):
                    module = module.to(compute_dtype)
    if training_args.deepspeed is not None and training_args.local_rank == 0:
        model.print_trainable_parameters()

    if training_args.gradient_checkpointing:
        model.enable_input_require_grads()

    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    model.config.use_cache = False

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    # check if zero3 mode enabled
    if deepspeed.is_deepspeed_zero3_enabled():
        # use deepspeed engine internal function to gather state dict
        # state_dict_zero3 contains whole parameters of base and lora adapters
        # we will not extract lora parameters since peft save_pretrained will do that
        # https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/peft_model.py#L125
        # https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/utils/save_and_load.py#L19
        state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
        if training_args.local_rank == 0:
            state_dict = state_dict_zero3
    else:
        # in other mode we use original code from fastchat team, to make sure our change is minimum
        state_dict = get_peft_state_maybe_zero_3(
            model.named_parameters(), lora_args.lora_bias
        )

    if training_args.local_rank == 0:
        model.save_pretrained(training_args.output_dir, state_dict=state_dict)


if __name__ == "__main__":
    train()