Spaces:
Runtime error
Runtime error
File size: 7,637 Bytes
8655a4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Adapted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import copy
import os
from dataclasses import dataclass, field
import random
import json
import logging
import pathlib
from typing import Dict, Optional, Sequence, List
import torch
import torch.distributed as dist
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
import transformers
from torch.utils.data import Dataset
from transformers import Trainer, AddedToken, BitsAndBytesConfig, deepspeed
from fastchat.train.train_flant5 import (
smart_tokenizer_and_embedding_resize,
make_supervised_data_module,
)
from fastchat.train.train_lora import get_peft_state_maybe_zero_3
from fastchat.model.model_adapter import get_conversation_template
default_conversation = get_conversation_template("t5")
# TODO: import and use code from ../data/dataset.py
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
@dataclass
class LoraArguments:
lora_r: int = 8
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(default_factory=lambda: ["q", "v"])
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
lazy_preprocess: bool = False
num_data: int = -1
preprocessed_path: str = field(
default=None, metadata={"help": "Path to the preprocessed training data."}
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=2048,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
def safe_save_model_for_hf_trainer(
trainer: transformers.Trainer, output_dir: str, state_dict: dict
):
"""Collects the state dict and dump to disk."""
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def train():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning(
"FSDP and ZeRO3 are both currently incompatible with QLoRA."
)
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
device_map=device_map,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
)
if lora_args.q_lora
else None,
)
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type=TaskType.SEQ_2_SEQ_LM,
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
model = get_peft_model(model, lora_config)
if training_args.deepspeed is not None and training_args.local_rank == 0:
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
# Dacheng: Note we can only use T5Tokenizer, otherwise it will prepend
# a space before special tokens.
tokenizer = transformers.T5Tokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"],
tokenizer=tokenizer,
model=model,
)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
# use deepspeed engine internal function to gather state dict
# state_dict_zero3 contains whole parameters of base and lora adapters
# we will not extract lora parameters since peft save_pretrained will do that
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/peft_model.py#L125
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/utils/save_and_load.py#L19
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
if training_args.local_rank == 0:
state_dict = state_dict_zero3
else:
# in other mode we use original code from fastchat team, to make sure our change is minimum
state_dict = get_peft_state_maybe_zero_3(
model.named_parameters(), lora_args.lora_bias
)
if training_args.local_rank == 0:
safe_save_model_for_hf_trainer(
trainer=trainer, output_dir=training_args.output_dir, state_dict=state_dict
)
if __name__ == "__main__":
train()
|