Spaces:
Runtime error
Runtime error
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright: | |
# | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
import json | |
import math | |
import pathlib | |
from typing import Dict, Optional, Sequence | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
import transformers | |
from transformers import Trainer | |
from transformers.trainer_pt_utils import LabelSmoother | |
from fastchat.conversation import SeparatorStyle | |
from fastchat.model.model_adapter import get_conversation_template | |
IGNORE_TOKEN_ID = LabelSmoother.ignore_index | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
trust_remote_code: bool = field( | |
default=False, | |
metadata={ | |
"help": "Whether or not to allow for custom models defined on the Hub in their own modeling files" | |
}, | |
) | |
padding_side: str = field( | |
default="right", metadata={"help": "The padding side in tokenizer"} | |
) | |
class DataArguments: | |
data_path: str = field( | |
default=None, metadata={"help": "Path to the training data."} | |
) | |
eval_data_path: str = field( | |
default=None, metadata={"help": "Path to the evaluation data."} | |
) | |
lazy_preprocess: bool = False | |
last_response_loss: bool = False | |
split_example_loss: bool = False | |
efficient_loss: bool = False | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
local_rank = None | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
def trainer_save_model_safe(trainer: transformers.Trainer): | |
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP | |
from torch.distributed.fsdp import StateDictType, FullStateDictConfig | |
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) | |
with FSDP.state_dict_type( | |
trainer.model, StateDictType.FULL_STATE_DICT, save_policy | |
): | |
trainer.save_model() | |
# add by wpf for yuan test | |
def right_replace(string, old, new, max=1): | |
return string[::-1].replace(old[::-1], new[::-1], max)[::-1] | |
def preprocess( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
data_args, | |
) -> Dict: | |
conv = get_conversation_template("yuan2") # wpf | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
if data_args.last_response_loss: | |
a = conversations[0].replace("<sep>", "<eod>") | |
a = right_replace(a, "<n>", "<sep>") | |
# a=right_replace(a,"<n>","\n",max=20) | |
conversations[0] = a | |
if data_args.split_example_loss: | |
a = conversations[0].replace("<sep>", "") | |
a = a.split("<n>") | |
for i in range(int(len(a) / 2)): | |
if i == 0: | |
conversations[i] = "" | |
if i != 0: | |
conversations.append("") | |
for j in range(i * 2): | |
conversations[i] = conversations[i] + a[j] + "<n>" | |
conversations[i] = ( | |
conversations[i] + a[i * 2] + "<sep>" + a[i * 2 + 1] + "<eod>" | |
) | |
if data_args.efficient_loss: | |
a = conversations[0].replace("<sep>", "<eod>") | |
conversations[0] = a | |
print(conversations) | |
# Tokenize conversations | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
# assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO #wpf | |
# Mask targets. Only compute loss on the assistant outputs. | |
# sep = conv.sep + conv.roles[1] + ": " #wpf | |
if data_args.split_example_loss: | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
turns = conversation.split("<sep>") | |
cur_len = 1 | |
target[:cur_len] = IGNORE_TOKEN_ID | |
for i, turn in enumerate(turns): | |
if turn == "": | |
break | |
if i == 0 or i == len(turns) - 1: | |
turn_len = len(tokenizer(turn).input_ids) | |
else: | |
turn_len = len(tokenizer(turn).input_ids) + 1 | |
# parts = turn.split(sep) | |
# if len(parts) != 2: | |
# break | |
# parts[0] += sep | |
# "-2" is hardcoded for the Llama tokenizer to make the offset correct. | |
instruction_len = 0 | |
if i == len(turns) - 1: | |
instruction_len = turn_len | |
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | |
cur_len += turn_len | |
target[cur_len:] = IGNORE_TOKEN_ID | |
# print("cur_len: ", cur_len) | |
# print("total_len: ", total_len) | |
if False: # Inspect and check the correctness of masking | |
z = target.clone() | |
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
rank0_print(tokenizer.decode(z)) | |
exit() | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_TOKEN_ID | |
rank0_print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" #turn = {len(turns) - 1}. (ignored)" | |
) | |
if data_args.efficient_loss: | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
turns = conversation.split("<n>") | |
cur_len = 1 | |
target[:cur_len] = IGNORE_TOKEN_ID | |
for i, turn in enumerate(turns): | |
if turn == "": | |
break | |
if i == 0 or i == len(turns) - 1: | |
turn_len = len(tokenizer(turn).input_ids) | |
else: | |
turn_len = len(tokenizer(turn).input_ids) + 1 | |
# parts = turn.split(sep) | |
# if len(parts) != 2: | |
# break | |
# parts[0] += sep | |
# "-2" is hardcoded for the Llama tokenizer to make the offset correct. | |
instruction_len = 0 | |
if i % 2 == 0: | |
instruction_len = turn_len | |
# if i != 0 and not tokenizer.legacy: | |
# # The legacy and non-legacy modes handle special tokens differently | |
# instruction_len -= 1 | |
# Ignore the user instructions | |
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | |
cur_len += turn_len | |
if i != 0 and not tokenizer.legacy: | |
# The legacy and non-legacy modes handle special tokens differently | |
cur_len -= 1 | |
target[cur_len:] = IGNORE_TOKEN_ID | |
# print("cur_len: ", cur_len) | |
# print("total_len: ", total_len) | |
if False: # Inspect and check the correctness of masking | |
z = target.clone() | |
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
rank0_print(tokenizer.decode(z)) | |
exit() | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_TOKEN_ID | |
rank0_print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" #turn = {len(turns) - 1}. (ignored)" | |
) | |
if data_args.last_response_loss: | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
turns = conversation.split("<sep>") | |
cur_len = 1 | |
target[:cur_len] = IGNORE_TOKEN_ID | |
for i, turn in enumerate(turns): | |
if turn == "": | |
break | |
if i == 0 or i == len(turns) - 1: | |
turn_len = len(tokenizer(turn).input_ids) | |
else: | |
turn_len = len(tokenizer(turn).input_ids) + 1 | |
# parts = turn.split(sep) | |
# if len(parts) != 2: | |
# break | |
# parts[0] += sep | |
# "-2" is hardcoded for the Llama tokenizer to make the offset correct. | |
instruction_len = 0 | |
if i == len(turns) - 1: | |
instruction_len = turn_len | |
# if i != 0 and not tokenizer.legacy: | |
# # The legacy and non-legacy modes handle special tokens differently | |
# instruction_len -= 1 | |
# Ignore the user instructions | |
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | |
cur_len += turn_len | |
# if i != 0 and not tokenizer.legacy: | |
# # The legacy and non-legacy modes handle special tokens differently | |
# cur_len -= 1 | |
target[cur_len:] = IGNORE_TOKEN_ID | |
# print("cur_len: ", cur_len) | |
# print("total_len: ", total_len) | |
if False: # Inspect and check the correctness of masking | |
z = target.clone() | |
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
rank0_print(tokenizer.decode(z)) | |
exit() | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_TOKEN_ID | |
rank0_print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" #turn = {len(turns) - 1}. (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
attention_mask=input_ids.ne(tokenizer.pad_token_id), | |
) | |
class SupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__( | |
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer | |
): | |
super(SupervisedDataset, self).__init__() | |
rank0_print("Formatting inputs...") | |
sources = [example["conversations"] for example in raw_data] | |
data_dict = preprocess(sources, tokenizer, data_args) | |
self.input_ids = data_dict["input_ids"] | |
self.labels = data_dict["labels"] | |
self.attention_mask = data_dict["attention_mask"] | |
def __len__(self): | |
return len(self.input_ids) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
return dict( | |
input_ids=self.input_ids[i], | |
labels=self.labels[i], | |
attention_mask=self.attention_mask[i], | |
) | |
class LazySupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__( | |
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer | |
): | |
super(LazySupervisedDataset, self).__init__() | |
self.tokenizer = tokenizer | |
rank0_print("Formatting inputs...Skip in lazy mode") | |
self.tokenizer = tokenizer | |
self.raw_data = raw_data | |
self.data_args = data_args | |
self.cached_data_dict = {} | |
def __len__(self): | |
return len(self.raw_data) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
if i in self.cached_data_dict: | |
return self.cached_data_dict[i] | |
ret = preprocess( | |
[self.raw_data[i]["conversations"]], self.tokenizer, self.data_args | |
) | |
ret = dict( | |
input_ids=ret["input_ids"][0], | |
labels=ret["labels"][0], | |
attention_mask=ret["attention_mask"][0], | |
) | |
self.cached_data_dict[i] = ret | |
return ret | |
def make_supervised_data_module( | |
tokenizer: transformers.PreTrainedTokenizer, data_args | |
) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
dataset_cls = ( | |
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset | |
) | |
rank0_print("Loading data...") | |
train_json = json.load(open(data_args.data_path, "r")) | |
train_dataset = dataset_cls(train_json, data_args, tokenizer=tokenizer) | |
if data_args.eval_data_path: | |
eval_json = json.load(open(data_args.eval_data_path, "r")) | |
eval_dataset = dataset_cls(eval_json, data_args, tokenizer=tokenizer) | |
else: | |
eval_dataset = None | |
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) | |
def train(): | |
global local_rank | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments) | |
) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
local_rank = training_args.local_rank | |
# Set RoPE scaling factor | |
config = transformers.AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
orig_ctx_len = getattr(config, "max_position_embeddings", None) | |
if orig_ctx_len and training_args.model_max_length > orig_ctx_len: | |
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len)) | |
config.rope_scaling = {"type": "linear", "factor": scaling_factor} | |
config.use_cache = False | |
# Load model and tokenizer | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
cache_dir=training_args.cache_dir, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side=model_args.padding_side, | |
use_fast=False, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
if tokenizer.pad_token != tokenizer.unk_token: | |
tokenizer.pad_token = tokenizer.unk_token | |
tokenizer.add_tokens( | |
[ | |
"<eod>", | |
"<sep>", | |
"<pad>", | |
"<mask>", | |
"<predict>", | |
"<FIM_SUFFIX>", | |
"<FIM_PREFIX>", | |
"<FIM_MIDDLE>", | |
"<commit_before>", | |
"<commit_msg>", | |
"<commit_after>", | |
"<jupyter_start>", | |
"<jupyter_text>", | |
"<jupyter_code>", | |
"<jupyter_output>", | |
"<empty_output>", | |
], | |
special_tokens=True, | |
) | |
# Load data | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
# Start trainner | |
trainer = Trainer( | |
model=model, tokenizer=tokenizer, args=training_args, **data_module | |
) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
# Save model | |
model.config.use_cache = True | |
trainer.save_state() | |
if trainer.is_deepspeed_enabled: | |
trainer.save_model() | |
else: | |
trainer_save_model_safe(trainer) | |
if __name__ == "__main__": | |
train() | |