File size: 65,306 Bytes
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
"""
To use a runningstats object,

    1. Create the the desired stat object, e.g., `m = Mean()`
    2. Feed it batches via the add method, e.g., `m.add(batch)`
    3. Repeat step 2 any number of times.
    4. Read out the statistic of interest, e.g., `m.mean()`

Built-in runningstats objects include:

    Mean - produces mean().
    Variance - mean() and variance() and stdev().
    Covariance - mean(), covariance(), correlation(), variance(), stdev().
    SecondMoment - moment() is the non-mean-centered covariance, E[x x^T].
    Quantile - quantile(), min(), max(), median(), mean(), variance(), stdev().
    TopK - topk() returns (values, indexes).
    Bincount - bincount() histograms nonnegative integer data.
    IoU - intersection(), union(), iou() tally binary co-occurrences.
    History - history() returns concatenation of data.
    CrossCovariance - covariance between two signals, without self-covariance.
    CrossIoU - iou between two signals, without self-IoU.
    CombinedStat - aggregates any set of stats.

Add more running stats by subclassing the Stat class.

These statistics are vectorized along dim>=1, so stat.add()
should supply a two-dimensional input where the zeroth
dimension is the batch/sampling dimension and the first
dimension is the feature dimension.

The data type and device used matches the data passed to add();
for example, for higher-precision covariances, convert to double
before calling add().

It is common to want to compute and remember a statistic sampled
over a Dataset, computed in batches, possibly caching the computed
statistic in a file. The tally(stat, dataset, cache) handles
this pattern.  It takes a statistic, a dataset, and a cache filename
and sets up a data loader that can be run (or not, if cached) to
compute the statistic, adopting the convention that cached stats are
saved to and loaded from numpy npz files.
"""

import math
import os
import random
import struct

import numpy
import torch
from torch.utils.data.sampler import Sampler


def tally(stat, dataset, cache=None, quiet=False, **kwargs):
    """
    To use tally, write code like the following.

        stat = Mean()
        ds = MyDataset()
        for batch in tally(stat, ds, cache='mymean.npz', batch_size=50):
           stat.add(batch)
        mean = stat.mean()

    The first argument should be the Stat being computed. After the
    loader is exhausted, tally will bring this stat to the cpu and
    cache it (if a cache is specified).

    The dataset can be a torch Dataset or a plain Tensor, or it can
    be a callable that returns one of those.

    Details on caching via the cache= argument:

        If the given filename cannot be loaded, tally will leave the
        statistic object empty and set up a DataLoader object so that
        the loop can be run.  After the last iteration of the loop, the
        completed statistic will be moved to the cpu device and also
        saved in the cache file.

        If the cached statistic can be loaded from the given file, tally
        will not set up the data loader and instead will return a fully
        loaded statistic object (on the cpu device) and an empty list as
        the loader.

        The `with cache_load_enabled(False):` context manager can
        be used to disable loading from the cache.

    If needed, a DataLoader will be created to wrap the dataset:

        Keyword arguments of tally are passed to the DataLoader,
        so batch_size, num_workers, pin_memory, etc. can be specified.

    Subsampling is supported via sample_size= and random_sample=:

        If sample_size=N is specified, rather than loading the whole
        dataset, only the first N items are sampled.  If additionally
        random_sample=S is specified, the pseudorandom seed S will be
        used to select a fixed psedorandom sample of size N to sample.
    """
    assert isinstance(stat, Stat)
    args = {}
    for k in ["sample_size"]:
        if k in kwargs:
            args[k] = kwargs[k]
    cached_state = load_cached_state(cache, args, quiet=quiet)
    if cached_state is not None:
        stat.load_state_dict(cached_state)

        def empty_loader():
            return
            yield

        return empty_loader()
    loader = make_loader(dataset, **kwargs)

    def wrapped_loader():
        yield from loader
        stat.to_(device="cpu")
        if cache is not None:
            save_cached_state(cache, stat, args)

    return wrapped_loader()


class cache_load_enabled:
    """
    When used as a context manager, cache_load_enabled(False) will prevent
    tally from loading cached statsitics, forcing them to be recomputed.
    """

    def __init__(self, enabled=True):
        self.prev = False
        self.enabled = enabled

    def __enter__(self):
        global global_load_cache_enabled
        self.prev = global_load_cache_enabled
        global_load_cache_enabled = self.enabled

    def __exit__(self, exc_type, exc_value, traceback):
        global global_load_cache_enabled
        global_load_cache_enabled = self.prev


class Stat:
    """
    Abstract base class for a running pytorch statistic.
    """

    def __init__(self, state):
        """
        By convention, all Stat subclasses can be initialized by passing
        state=; and then they will initialize by calling load_state_dict.
        """
        self.load_state_dict(resolve_state_dict(state))

    def add(self, x, *args, **kwargs):
        """
        Observes a batch of samples to be incorporated into the statistic.
        Dimension 0 should be the batch dimension, and dimension 1 should
        be the feature dimension of the pytorch tensor x.
        """
        pass

    def load_state_dict(self, d):
        """
        Loads this Stat from a dictionary of numpy arrays as saved
        by state_dict.
        """
        pass

    def state_dict(self):
        """
        Saves this Stat as a dictionary of numpy arrays that can be
        stored in an npz or reloaded later using load_state_dict.
        """
        return {}

    def save(self, filename):
        """
        Saves this stat as an npz file containing the state_dict.
        """
        save_cached_state(filename, self, {})

    def load(self, filename):
        """
        Loads this stat from an npz file containing a saved state_dict.
        """
        self.load_state_dict(load_cached_state(filename, {}, quiet=True, throw=True))

    def to_(self, device):
        """
        Moves this Stat to the given device.
        """
        pass

    def cpu_(self):
        """
        Moves this Stat to the cpu device.
        """
        self.to_("cpu")

    def cuda_(self):
        """
        Moves this Stat to the default cuda device.
        """
        self.to_("cuda")

    def _normalize_add_shape(self, x, attr="data_shape"):
        """
        Flattens input data to 2d.
        """
        if not torch.is_tensor(x):
            x = torch.tensor(x)
        if len(x.shape) < 1:
            x = x.view(-1)
        data_shape = getattr(self, attr, None)
        if data_shape is None:
            data_shape = x.shape[1:]
            setattr(self, attr, data_shape)
        else:
            assert x.shape[1:] == data_shape
        return x.view(x.shape[0], int(numpy.prod(data_shape)))

    def _restore_result_shape(self, x, attr="data_shape"):
        """
        Restores output data to input data shape.
        """
        data_shape = getattr(self, attr, None)
        if data_shape is None:
            return x
        return x.view(data_shape * len(x.shape))


class Mean(Stat):
    """
    Running mean.
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self.batchcount = 0
        self._mean = None
        self.data_shape = None

    def add(self, a):
        a = self._normalize_add_shape(a)
        if len(a) == 0:
            return
        batch_count = a.shape[0]
        batch_mean = a.sum(0) / batch_count
        self.batchcount += 1
        # Initial batch.
        if self._mean is None:
            self.count = batch_count
            self._mean = batch_mean
            return
        # Update a batch using Chan-style update for numerical stability.
        self.count += batch_count
        new_frac = float(batch_count) / self.count
        # Update the mean according to the batch deviation from the old mean.
        delta = batch_mean.sub_(self._mean).mul_(new_frac)
        self._mean.add_(delta)

    def size(self):
        return self.count

    def mean(self):
        return self._restore_result_shape(self._mean)

    def to_(self, device):
        if self._mean is not None:
            self._mean = self._mean.to(device)

    def load_state_dict(self, state):
        self.count = state["count"]
        self.batchcount = state["batchcount"]
        self._mean = torch.from_numpy(state["mean"])
        self.data_shape = (
            None if state["data_shape"] is None else tuple(state["data_shape"])
        )

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            data_shape=self.data_shape and tuple(self.data_shape),
            batchcount=self.batchcount,
            mean=self._mean.cpu().numpy(),
        )


class NormMean(Mean):
    """
    Running average of the norm of input vectors
    """

    def __init__(self, state=None):
        super().__init__(state)

    def add(self, a):
        super().add(a.norm(dim=-1))


class Variance(Stat):
    """
    Running computation of mean and variance. Use this when you just need
    basic stats without covariance.
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self.batchcount = 0
        self._mean = None
        self.v_cmom2 = None
        self.data_shape = None

    def add(self, a):
        a = self._normalize_add_shape(a)
        if len(a) == 0:
            return
        batch_count = a.shape[0]
        batch_mean = a.sum(0) / batch_count
        centered = a - batch_mean
        self.batchcount += 1
        # Initial batch.
        if self._mean is None:
            self.count = batch_count
            self._mean = batch_mean
            self.v_cmom2 = centered.pow(2).sum(0)
            return
        # Update a batch using Chan-style update for numerical stability.
        oldcount = self.count
        self.count += batch_count
        new_frac = float(batch_count) / self.count
        # Update the mean according to the batch deviation from the old mean.
        delta = batch_mean.sub_(self._mean).mul_(new_frac)
        self._mean.add_(delta)
        # Update the variance using the batch deviation
        self.v_cmom2.add_(centered.pow(2).sum(0))
        self.v_cmom2.add_(delta.pow_(2).mul_(new_frac * oldcount))

    def size(self):
        return self.count

    def mean(self):
        return self._restore_result_shape(self._mean)

    def variance(self, unbiased=True):
        return self._restore_result_shape(
            self.v_cmom2 / (self.count - (1 if unbiased else 0))
        )

    def stdev(self, unbiased=True):
        return self.variance(unbiased=unbiased).sqrt()

    def to_(self, device):
        if self._mean is not None:
            self._mean = self._mean.to(device)
        if self.v_cmom2 is not None:
            self.v_cmom2 = self.v_cmom2.to(device)

    def load_state_dict(self, state):
        self.count = state["count"]
        self.batchcount = state["batchcount"]
        self._mean = torch.from_numpy(state["mean"])
        self.v_cmom2 = torch.from_numpy(state["cmom2"])
        self.data_shape = (
            None if state["data_shape"] is None else tuple(state["data_shape"])
        )

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            data_shape=self.data_shape and tuple(self.data_shape),
            batchcount=self.batchcount,
            mean=self._mean.cpu().numpy(),
            cmom2=self.v_cmom2.cpu().numpy(),
        )


class Covariance(Stat):
    """
    Running computation. Use this when the entire covariance matrix is needed,
    and when the whole covariance matrix fits in the GPU.

    Chan-style numerically stable update of mean and full covariance matrix.
    Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self._mean = None
        self.cmom2 = None
        self.data_shape = None

    def add(self, a):
        a = self._normalize_add_shape(a)
        if len(a) == 0:
            return
        batch_count = a.shape[0]
        # Initial batch.
        if self._mean is None:
            self.count = batch_count
            self._mean = a.sum(0) / batch_count
            centered = a - self._mean
            self.cmom2 = centered.t().mm(centered)
            return
        # Update a batch using Chan-style update for numerical stability.
        self.count += batch_count
        # Update the mean according to the batch deviation from the old mean.
        delta = a - self._mean
        self._mean.add_(delta.sum(0) / self.count)
        delta2 = a - self._mean
        # Update the variance using the batch deviation
        self.cmom2.addmm_(mat1=delta.t(), mat2=delta2)

    def to_(self, device):
        if self._mean is not None:
            self._mean = self._mean.to(device)
        if self.cmom2 is not None:
            self.cmom2 = self.cmom2.to(device)

    def mean(self):
        return self._restore_result_shape(self._mean)

    def covariance(self, unbiased=True):
        return self._restore_result_shape(
            self.cmom2 / (self.count - (1 if unbiased else 0))
        )

    def correlation(self, unbiased=True):
        cov = self.cmom2 / (self.count - (1 if unbiased else 0))
        rstdev = cov.diag().sqrt().reciprocal()
        return self._restore_result_shape(rstdev[:, None] * cov * rstdev[None, :])

    def variance(self, unbiased=True):
        return self._restore_result_shape(
            self.cmom2.diag() / (self.count - (1 if unbiased else 0))
        )

    def stdev(self, unbiased=True):
        return self.variance(unbiased=unbiased).sqrt()

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            data_shape=self.data_shape and tuple(self.data_shape),
            mean=self._mean.cpu().numpy(),
            cmom2=self.cmom2.cpu().numpy(),
        )

    def load_state_dict(self, state):
        self.count = state["count"]
        self._mean = torch.from_numpy(state["mean"])
        self.cmom2 = torch.from_numpy(state["cmom2"])
        self.data_shape = (
            None if state["data_shape"] is None else tuple(state["data_shape"])
        )


class SecondMoment(Stat):
    """
    Running computation. Use this when the entire non-centered 2nd-moment
    'covariance-like' matrix is needed, and when the whole matrix fits
    in the GPU.
    """

    def __init__(self, split_batch=True, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self.mom2 = None
        self.split_batch = split_batch

    def add(self, a):
        a = self._normalize_add_shape(a)
        if len(a) == 0:
            return
        # Initial batch reveals the shape of the data.
        if self.count == 0:
            self.mom2 = a.new(a.shape[1], a.shape[1]).zero_()
        batch_count = a.shape[0]
        # Update the covariance using the batch deviation
        self.count += batch_count
        self.mom2 += a.t().mm(a)

    def to_(self, device):
        if self.mom2 is not None:
            self.mom2 = self.mom2.to(device)

    def moment(self):
        return self.mom2 / self.count

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            mom2=self.mom2.cpu().numpy(),
        )

    def load_state_dict(self, state):
        self.count = int(state["count"])
        self.mom2 = torch.from_numpy(state["mom2"])


class Bincount(Stat):
    """
    Running bincount.  The counted array should be an integer type with
    non-negative integers.
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self._bincount = None

    def add(self, a, size=None):
        a = a.view(-1)
        bincount = a.bincount()
        if self._bincount is None:
            self._bincount = bincount
        elif len(self._bincount) < len(bincount):
            bincount[: len(self._bincount)] += self._bincount
            self._bincount = bincount
        else:
            self._bincount[: len(bincount)] += bincount
        if size is None:
            self.count += len(a)
        else:
            self.count += size

    def to_(self, device):
        self._bincount = self._bincount.to(device)

    def size(self):
        return self.count

    def bincount(self):
        return self._bincount

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            bincount=self._bincount.cpu().numpy(),
        )

    def load_state_dict(self, dic):
        self.count = int(dic["count"])
        self._bincount = torch.from_numpy(dic["bincount"])


class CrossCovariance(Stat):
    """
    Covariance. Use this when an off-diagonal block of the covariance
    matrix is needed (e.g., when the whole covariance matrix does
    not fit in the GPU, this could use a quarter of the memory).

    Chan-style numerically stable update of mean and full covariance matrix.
    Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386
    """

    def __init__(self, split_batch=True, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self._mean = None
        self.cmom2 = None
        self.v_cmom2 = None
        self.split_batch = split_batch

    def add(self, a, b):
        if len(a.shape) == 1:
            a = a[None, :]
            b = b[None, :]
        assert a.shape[0] == b.shape[0]
        if len(a.shape) > 2:
            a, b = [
                d.view(d.shape[0], d.shape[1], -1)
                .permute(0, 2, 1)
                .reshape(-1, d.shape[1])
                for d in [a, b]
            ]
        batch_count = a.shape[0]
        # Initial batch.
        if self._mean is None:
            self.count = batch_count
            self._mean = [d.sum(0) / batch_count for d in [a, b]]
            centered = [d - bm for d, bm in zip([a, b], self._mean)]
            self.v_cmom2 = [c.pow(2).sum(0) for c in centered]
            self.cmom2 = centered[0].t().mm(centered[1])
            return
        # Update a batch using Chan-style update for numerical stability.
        self.count += batch_count
        # Update the mean according to the batch deviation from the old mean.
        delta = [(d - bm) for d, bm in zip([a, b], self._mean)]
        for m, d in zip(self._mean, delta):
            m.add_(d.sum(0) / self.count)
        delta2 = [(d - bm) for d, bm in zip([a, b], self._mean)]
        # Update the cross-covariance using the batch deviation
        self.cmom2.addmm_(mat1=delta[0].t(), mat2=delta2[1])
        # Update the variance using the batch deviation
        for vc2, d, d2 in zip(self.v_cmom2, delta, delta2):
            vc2.add_((d * d2).sum(0))

    def mean(self):
        return self._mean

    def variance(self, unbiased=True):
        return [vc2 / (self.count - (1 if unbiased else 0)) for vc2 in self.v_cmom2]

    def stdev(self, unbiased=True):
        return [v.sqrt() for v in self.variance(unbiased=unbiased)]

    def covariance(self, unbiased=True):
        return self.cmom2 / (self.count - (1 if unbiased else 0))

    def correlation(self):
        covariance = self.covariance(unbiased=False)
        rstdev = [s.reciprocal() for s in self.stdev(unbiased=False)]
        cor = rstdev[0][:, None] * covariance * rstdev[1][None, :]
        # Remove NaNs
        cor[torch.isnan(cor)] = 0
        return cor

    def to_(self, device):
        self._mean = [m.to(device) for m in self._mean]
        self.v_cmom2 = [vcs.to(device) for vcs in self.v_cmom2]
        self.cmom2 = self.cmom2.to(device)

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            mean_a=self._mean[0].cpu().numpy(),
            mean_b=self._mean[1].cpu().numpy(),
            cmom2_a=self.v_cmom2[0].cpu().numpy(),
            cmom2_b=self.v_cmom2[1].cpu().numpy(),
            cmom2=self.cmom2.cpu().numpy(),
        )

    def load_state_dict(self, state):
        self.count = int(state["count"])
        self._mean = [torch.from_numpy(state[f"mean_{k}"]) for k in "ab"]
        self.v_cmom2 = [torch.from_numpy(state[f"cmom2_{k}"]) for k in "ab"]
        self.cmom2 = torch.from_numpy(state["cmom2"])


def _float_from_bool(a):
    """
    Since pytorch only supports matrix multiplication on float,
    IoU computations are done using floating point types.

    This function binarizes the input (positive to True and
    nonpositive to False), and converts from bool to float.
    If the data is already a floating-point type, it leaves
    it keeps the same type; otherwise it uses float.
    """
    if a.dtype == torch.bool:
        return a.float()
    if a.dtype.is_floating_point:
        return a.sign().clamp_(0)
    return (a > 0).float()


class IoU(Stat):
    """
    Running computation of intersections and unions of all features.
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self._intersection = None

    def add(self, a):
        assert len(a.shape) == 2
        a = _float_from_bool(a)
        if self._intersection is None:
            self._intersection = torch.mm(a.t(), a)
        else:
            self._intersection.addmm_(a.t(), a)
        self.count += len(a)

    def size(self):
        return self.count

    def intersection(self):
        return self._intersection

    def union(self):
        total = self._intersection.diagonal(0)
        return total[:, None] + total[None, :] - self._intersection

    def iou(self):
        return self.intersection() / (self.union() + 1e-20)

    def to_(self, _device):
        self._intersection = self._intersection.to(_device)

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            intersection=self._intersection.cpu().numpy(),
        )

    def load_state_dict(self, state):
        self.count = int(state["count"])
        self._intersection = torch.tensor(state["intersection"])


class CrossIoU(Stat):
    """
    Running computation of intersections and unions of two binary vectors.
    """

    def __init__(self, state=None):
        if state is not None:
            return super().__init__(state)
        self.count = 0
        self._intersection = None
        self.total_a = None
        self.total_b = None

    def add(self, a, b):
        assert len(a.shape) == 2 and len(b.shape) == 2
        assert len(a) == len(b), f"{len(a)} vs {len(b)}"
        a = _float_from_bool(a)  # CUDA only supports mm on float...
        b = _float_from_bool(b)  # otherwise we would use integers.
        intersection = torch.mm(a.t(), b)
        asum = a.sum(0)
        bsum = b.sum(0)
        if self._intersection is None:
            self._intersection = intersection
            self.total_a = asum
            self.total_b = bsum
        else:
            self._intersection += intersection
            self.total_a += asum
            self.total_b += bsum
        self.count += len(a)

    def size(self):
        return self.count

    def intersection(self):
        return self._intersection

    def union(self):
        return self.total_a[:, None] + self.total_b[None, :] - self._intersection

    def iou(self):
        return self.intersection() / (self.union() + 1e-20)

    def to_(self, _device):
        self.total_a = self.total_a.to(_device)
        self.total_b = self.total_b.to(_device)
        self._intersection = self._intersection.to(_device)

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            count=self.count,
            total_a=self.total_a.cpu().numpy(),
            total_b=self.total_b.cpu().numpy(),
            intersection=self._intersection.cpu().numpy(),
        )

    def load_state_dict(self, state):
        self.count = int(state["count"])
        self.total_a = torch.tensor(state["total_a"])
        self.total_b = torch.tensor(state["total_b"])
        self._intersection = torch.tensor(state["intersection"])


class Quantile(Stat):
    """
    Streaming randomized quantile computation for torch.

    Add any amount of data repeatedly via add(data).  At any time,
    quantile estimates be read out using quantile(q).

    Implemented as a sorted sample that retains at least r samples
    (by default r = 3072); the number of retained samples will grow to
    a finite ceiling as the data is accumulated.  Accuracy scales according
    to r: the default is to set resolution to be accurate to better than about
    0.1%, while limiting storage to about 50,000 samples.

    Good for computing quantiles of huge data without using much memory.
    Works well on arbitrary data with probability near 1.

    Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty
    from FOCS 2016.  http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf
    """

    def __init__(self, r=3 * 1024, buffersize=None, seed=None, state=None):
        if state is not None:
            return super().__init__(state)
        self.depth = None
        self.dtype = None
        self.device = None
        resolution = r * 2  # sample array is at least half full before discard
        self.resolution = resolution
        # Default buffersize: 128 samples (and smaller than resolution).
        if buffersize is None:
            buffersize = min(128, (resolution + 7) // 8)
        self.buffersize = buffersize
        self.samplerate = 1.0
        self.data = None
        self.firstfree = [0]
        self.randbits = torch.ByteTensor(resolution)
        self.currentbit = len(self.randbits) - 1
        self.extremes = None
        self.count = 0
        self.batchcount = 0

    def size(self):
        return self.count

    def _lazy_init(self, incoming):
        self.depth = incoming.shape[1]
        self.dtype = incoming.dtype
        self.device = incoming.device
        self.data = [
            torch.zeros(
                self.depth, self.resolution, dtype=self.dtype, device=self.device
            )
        ]
        self.extremes = torch.zeros(self.depth, 2, dtype=self.dtype, device=self.device)
        self.extremes[:, 0] = float("inf")
        self.extremes[:, -1] = -float("inf")

    def to_(self, device):
        """Switches internal storage to specified device."""
        if device != self.device:
            old_data = self.data
            old_extremes = self.extremes
            self.data = [d.to(device) for d in self.data]
            self.extremes = self.extremes.to(device)
            self.device = self.extremes.device
            del old_data
            del old_extremes

    def add(self, incoming):
        if self.depth is None:
            self._lazy_init(incoming)
        assert len(incoming.shape) == 2
        assert incoming.shape[1] == self.depth, (incoming.shape[1], self.depth)
        self.count += incoming.shape[0]
        self.batchcount += 1
        # Convert to a flat torch array.
        if self.samplerate >= 1.0:
            self._add_every(incoming)
            return
        # If we are sampling, then subsample a large chunk at a time.
        self._scan_extremes(incoming)
        chunksize = int(math.ceil(self.buffersize / self.samplerate))
        for index in range(0, len(incoming), chunksize):
            batch = incoming[index : index + chunksize]
            sample = sample_portion(batch, self.samplerate)
            if len(sample):
                self._add_every(sample)

    def _add_every(self, incoming):
        supplied = len(incoming)
        index = 0
        while index < supplied:
            ff = self.firstfree[0]
            available = self.data[0].shape[1] - ff
            if available == 0:
                if not self._shift():
                    # If we shifted by subsampling, then subsample.
                    incoming = incoming[index:]
                    if self.samplerate >= 0.5:
                        # First time sampling - the data source is very large.
                        self._scan_extremes(incoming)
                    incoming = sample_portion(incoming, self.samplerate)
                    index = 0
                    supplied = len(incoming)
                ff = self.firstfree[0]
                available = self.data[0].shape[1] - ff
            copycount = min(available, supplied - index)
            self.data[0][:, ff : ff + copycount] = torch.t(
                incoming[index : index + copycount, :]
            )
            self.firstfree[0] += copycount
            index += copycount

    def _shift(self):
        index = 0
        # If remaining space at the current layer is less than half prev
        # buffer size (rounding up), then we need to shift it up to ensure
        # enough space for future shifting.
        while self.data[index].shape[1] - self.firstfree[index] < (
            -(-self.data[index - 1].shape[1] // 2) if index else 1
        ):
            if index + 1 >= len(self.data):
                return self._expand()
            data = self.data[index][:, 0 : self.firstfree[index]]
            data = data.sort()[0]
            if index == 0 and self.samplerate >= 1.0:
                self._update_extremes(data[:, 0], data[:, -1])
            offset = self._randbit()
            position = self.firstfree[index + 1]
            subset = data[:, offset::2]
            self.data[index + 1][:, position : position + subset.shape[1]] = subset
            self.firstfree[index] = 0
            self.firstfree[index + 1] += subset.shape[1]
            index += 1
        return True

    def _scan_extremes(self, incoming):
        # When sampling, we need to scan every item still to get extremes
        self._update_extremes(
            torch.min(incoming, dim=0)[0], torch.max(incoming, dim=0)[0]
        )

    def _update_extremes(self, minr, maxr):
        self.extremes[:, 0] = torch.min(
            torch.stack([self.extremes[:, 0], minr]), dim=0
        )[0]
        self.extremes[:, -1] = torch.max(
            torch.stack([self.extremes[:, -1], maxr]), dim=0
        )[0]

    def _randbit(self):
        self.currentbit += 1
        if self.currentbit >= len(self.randbits):
            self.randbits.random_(to=2)
            self.currentbit = 0
        return self.randbits[self.currentbit]

    def state_dict(self):
        state = dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            resolution=self.resolution,
            depth=self.depth,
            buffersize=self.buffersize,
            samplerate=self.samplerate,
            sizes=numpy.array([d.shape[1] for d in self.data]),
            extremes=self.extremes.cpu().detach().numpy(),
            size=self.count,
            batchcount=self.batchcount,
        )
        for i, (d, f) in enumerate(zip(self.data, self.firstfree)):
            state[f"data.{i}"] = d.cpu().detach().numpy()[:, :f].T
        return state

    def load_state_dict(self, state):
        self.resolution = int(state["resolution"])
        self.randbits = torch.ByteTensor(self.resolution)
        self.currentbit = len(self.randbits) - 1
        self.depth = int(state["depth"])
        self.buffersize = int(state["buffersize"])
        self.samplerate = float(state["samplerate"])
        firstfree = []
        buffers = []
        for i, s in enumerate(state["sizes"]):
            d = state[f"data.{i}"]
            firstfree.append(d.shape[0])
            buf = numpy.zeros((d.shape[1], s), dtype=d.dtype)
            buf[:, : d.shape[0]] = d.T
            buffers.append(torch.from_numpy(buf))
        self.firstfree = firstfree
        self.data = buffers
        self.extremes = torch.from_numpy((state["extremes"]))
        self.count = int(state["size"])
        self.batchcount = int(state.get("batchcount", 0))
        self.dtype = self.extremes.dtype
        self.device = self.extremes.device

    def min(self):
        return self.minmax()[0]

    def max(self):
        return self.minmax()[-1]

    def minmax(self):
        if self.firstfree[0]:
            self._scan_extremes(self.data[0][:, : self.firstfree[0]].t())
        return self.extremes.clone()

    def median(self):
        return self.quantiles(0.5)

    def mean(self):
        return self.integrate(lambda x: x) / self.count

    def variance(self, unbiased=True):
        mean = self.mean()[:, None]
        return self.integrate(lambda x: (x - mean).pow(2)) / (
            self.count - (1 if unbiased else 0)
        )

    def stdev(self, unbiased=True):
        return self.variance(unbiased=unbiased).sqrt()

    def _expand(self):
        cap = self._next_capacity()
        if cap > 0:
            # First, make a new layer of the proper capacity.
            self.data.insert(
                0, torch.zeros(self.depth, cap, dtype=self.dtype, device=self.device)
            )
            self.firstfree.insert(0, 0)
        else:
            # Unless we're so big we are just subsampling.
            assert self.firstfree[0] == 0
            self.samplerate *= 0.5
        for index in range(1, len(self.data)):
            # Scan for existing data that needs to be moved down a level.
            amount = self.firstfree[index]
            if amount == 0:
                continue
            position = self.firstfree[index - 1]
            # Move data down if it would leave enough empty space there
            # This is the key invariant: enough empty space to fit half
            # of the previous level's buffer size (rounding up)
            if self.data[index - 1].shape[1] - (amount + position) >= (
                -(-self.data[index - 2].shape[1] // 2) if (index - 1) else 1
            ):
                self.data[index - 1][:, position : position + amount] = self.data[
                    index
                ][:, :amount]
                self.firstfree[index - 1] += amount
                self.firstfree[index] = 0
            else:
                # Scrunch the data if it would not.
                data = self.data[index][:, :amount]
                data = data.sort()[0]
                if index == 1:
                    self._update_extremes(data[:, 0], data[:, -1])
                offset = self._randbit()
                scrunched = data[:, offset::2]
                self.data[index][:, : scrunched.shape[1]] = scrunched
                self.firstfree[index] = scrunched.shape[1]
        return cap > 0

    def _next_capacity(self):
        cap = int(math.ceil(self.resolution * (0.67 ** len(self.data))))
        if cap < 2:
            return 0
        # Round up to the nearest multiple of 8 for better GPU alignment.
        cap = -8 * (-cap // 8)
        return max(self.buffersize, cap)

    def _weighted_summary(self, sort=True):
        if self.firstfree[0]:
            self._scan_extremes(self.data[0][:, : self.firstfree[0]].t())
        size = sum(self.firstfree)
        weights = torch.FloatTensor(size)  # Floating point
        summary = torch.zeros(self.depth, size, dtype=self.dtype, device=self.device)
        index = 0
        for level, ff in enumerate(self.firstfree):
            if ff == 0:
                continue
            summary[:, index : index + ff] = self.data[level][:, :ff]
            weights[index : index + ff] = 2.0**level
            index += ff
        assert index == summary.shape[1]
        if sort:
            summary, order = torch.sort(summary, dim=-1)
            weights = weights[order.view(-1).cpu()].view(order.shape)
            summary = torch.cat(
                [self.extremes[:, :1], summary, self.extremes[:, 1:]], dim=-1
            )
            weights = torch.cat(
                [
                    torch.zeros(weights.shape[0], 1),
                    weights,
                    torch.zeros(weights.shape[0], 1),
                ],
                dim=-1,
            )
        return (summary, weights)

    def quantiles(self, quantiles):
        if not hasattr(quantiles, "cpu"):
            quantiles = torch.tensor(quantiles)
        qshape = quantiles.shape
        if self.count == 0:
            return torch.full((self.depth,) + qshape, torch.nan)
        summary, weights = self._weighted_summary()
        cumweights = torch.cumsum(weights, dim=-1) - weights / 2
        cumweights /= torch.sum(weights, dim=-1, keepdim=True)
        result = torch.zeros(
            self.depth, quantiles.numel(), dtype=self.dtype, device=self.device
        )
        # numpy is needed for interpolation
        nq = quantiles.view(-1).cpu().detach().numpy()
        ncw = cumweights.cpu().detach().numpy()
        nsm = summary.cpu().detach().numpy()
        for d in range(self.depth):
            result[d] = torch.tensor(
                numpy.interp(nq, ncw[d], nsm[d]), dtype=self.dtype, device=self.device
            )
        return result.view((self.depth,) + qshape)

    def integrate(self, fun):
        result = []
        for level, ff in enumerate(self.firstfree):
            if ff == 0:
                continue
            result.append(
                torch.sum(fun(self.data[level][:, :ff]) * (2.0**level), dim=-1)
            )
        if len(result) == 0:
            return None
        return torch.stack(result).sum(dim=0) / self.samplerate

    def readout(self, count=1001):
        return self.quantiles(torch.linspace(0.0, 1.0, count))

    def normalize(self, data):
        """
        Given input data as taken from the training distirbution,
        normalizes every channel to reflect quantile values,
        uniformly distributed, within [0, 1].
        """
        assert self.count > 0
        assert data.shape[0] == self.depth
        summary, weights = self._weighted_summary()
        cumweights = torch.cumsum(weights, dim=-1) - weights / 2
        cumweights /= torch.sum(weights, dim=-1, keepdim=True)
        result = torch.zeros_like(data).float()
        # numpy is needed for interpolation
        ndata = data.cpu().numpy().reshape((data.shape[0], -1))
        ncw = cumweights.cpu().numpy()
        nsm = summary.cpu().numpy()
        for d in range(self.depth):
            normed = torch.tensor(
                numpy.interp(ndata[d], nsm[d], ncw[d]),
                dtype=torch.float,
                device=data.device,
            ).clamp_(0.0, 1.0)
            if len(data.shape) > 1:
                normed = normed.view(*(data.shape[1:]))
            result[d] = normed
        return result


def sample_portion(vec, p=0.5):
    """
    Subsamples a fraction (given by p) of the given batch.  Used by
    Quantile when the data gets very very large.
    """
    bits = torch.bernoulli(
        torch.zeros(vec.shape[0], dtype=torch.uint8, device=vec.device), p
    )
    return vec[bits]


class TopK:
    """
    A class to keep a running tally of the the top k values (and indexes)
    of any number of torch feature components.  Will work on the GPU if
    the data is on the GPU.  Tracks largest by default, but tracks smallest
    if largest=False is passed.

    This version flattens all arrays to avoid crashes.
    """

    def __init__(self, k=100, largest=True, state=None):
        if state is not None:
            return super().__init__(state)
        self.k = k
        self.count = 0
        # This version flattens all data internally to 2-d tensors,
        # to avoid crashes with the current pytorch topk implementation.
        # The data is puffed back out to arbitrary tensor shapes on output.
        self.data_shape = None
        self.top_data = None
        self.top_index = None
        self.next = 0
        self.linear_index = 0
        self.perm = None
        self.largest = largest

    def add(self, data, index=None):
        """
        Adds a batch of data to be considered for the running top k.
        The zeroth dimension enumerates the observations.  All other
        dimensions enumerate different features.
        """
        if self.top_data is None:
            # Allocation: allocate a buffer of size 5*k, at least 10, for each.
            self.data_shape = data.shape[1:]
            feature_size = int(numpy.prod(self.data_shape))
            self.top_data = torch.zeros(
                feature_size, max(10, self.k * 5), out=data.new()
            )
            self.top_index = self.top_data.clone().long()
            self.linear_index = (
                0
                if len(data.shape) == 1
                else torch.arange(feature_size, out=self.top_index.new()).mul_(
                    self.top_data.shape[-1]
                )[:, None]
            )
        size = data.shape[0]
        sk = min(size, self.k)
        if self.top_data.shape[-1] < self.next + sk:
            # Compression: if full, keep topk only.
            self.top_data[:, : self.k], self.top_index[:, : self.k] = self.topk(
                sorted=False, flat=True
            )
            self.next = self.k
        # Pick: copy the top sk of the next batch into the buffer.
        # Currently strided topk is slow.  So we clone after transpose.
        # TODO: remove the clone() if it becomes faster.
        cdata = data.reshape(size, numpy.prod(data.shape[1:])).t().clone()
        td, ti = cdata.topk(sk, sorted=False, largest=self.largest)
        self.top_data[:, self.next : self.next + sk] = td
        if index is not None:
            ti = index[ti]
        else:
            ti = ti + self.count
        self.top_index[:, self.next : self.next + sk] = ti
        self.next += sk
        self.count += size

    def size(self):
        return self.count

    def topk(self, sorted=True, flat=False):
        """
        Returns top k data items and indexes in each dimension,
        with channels in the first dimension and k in the last dimension.
        """
        k = min(self.k, self.next)
        # bti are top indexes relative to buffer array.
        td, bti = self.top_data[:, : self.next].topk(
            k, sorted=sorted, largest=self.largest
        )
        # we want to report top indexes globally, which is ti.
        ti = self.top_index.view(-1)[(bti + self.linear_index).view(-1)].view(
            *bti.shape
        )
        if flat:
            return td, ti
        else:
            return (
                td.view(*(self.data_shape + (-1,))),
                ti.view(*(self.data_shape + (-1,))),
            )

    def to_(self, device):
        if self.top_data is not None:
            self.top_data = self.top_data.to(device)
        if self.top_index is not None:
            self.top_index = self.top_index.to(device)
        if isinstance(self.linear_index, torch.Tensor):
            self.linear_index = self.linear_index.to(device)

    def state_dict(self):
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            k=self.k,
            count=self.count,
            largest=self.largest,
            data_shape=self.data_shape and tuple(self.data_shape),
            top_data=self.top_data.cpu().detach().numpy(),
            top_index=self.top_index.cpu().detach().numpy(),
            next=self.next,
            linear_index=(
                self.linear_index.cpu().numpy()
                if isinstance(self.linear_index, torch.Tensor)
                else self.linear_index
            ),
            perm=self.perm,
        )

    def load_state_dict(self, state):
        self.k = int(state["k"])
        self.count = int(state["count"])
        self.largest = bool(state.get("largest", True))
        self.data_shape = (
            None if state["data_shape"] is None else tuple(state["data_shape"])
        )
        self.top_data = torch.from_numpy(state["top_data"])
        self.top_index = torch.from_numpy(state["top_index"])
        self.next = int(state["next"])
        self.linear_index = (
            torch.from_numpy(state["linear_index"])
            if len(state["linear_index"].shape) > 0
            else int(state["linear_index"])
        )


class History(Stat):
    """
    Accumulates the concatenation of all the added data.
    """

    def __init__(self, data=None, state=None):
        if state is not None:
            return super().__init__(state)
        self._data = data
        self._added = []

    def _cat_added(self):
        if len(self._added):
            self._data = torch.cat(
                ([self._data] if self._data is not None else []) + self._added
            )
            self._added = []

    def add(self, d):
        self._added.append(d)
        if len(self._added) > 100:
            self._cat_added()

    def history(self):
        self._cat_added()
        return self._data

    def load_state_dict(self, state):
        data = state["data"]
        self._data = None if data is None else torch.from_numpy(data)
        self._added = []

    def state_dict(self):
        self._cat_added()
        return dict(
            constructor=self.__module__ + "." + self.__class__.__name__ + "()",
            data=None if self._data is None else self._data.cpu().numpy(),
        )

    def to_(self, device):
        """Switches internal storage to specified device."""
        self._cat_added()
        if self._data is not None:
            self._data = self._data.to(device)


class CombinedStat(Stat):
    """
    A Stat that bundles together multiple Stat objects.
    Convenient for loading and saving a state_dict made up of a
    hierarchy of stats, and for use with the tally() function.
    Example:

        cs = CombinedStat(m=Mean(), q=Quantile())
        for [b] in tally(cs, MyDataSet(), cache=fn, batch_size=100):
            cs.add(b)
        print(cs.m.mean())
        print(cs.q.median())
    """

    def __init__(self, state=None, **kwargs):
        self._objs = kwargs
        if state is not None:
            return super().__init__(state)

    def __getattr__(self, k):
        if k in self._objs:
            return self._objs[k]
        raise AttributeError()

    def add(self, d, *args, **kwargs):
        for obj in self._objs.values():
            obj.add(d, *args, **kwargs)

    def load_state_dict(self, state):
        for prefix, obj in self._objs.items():
            obj.load_state_dict(pull_key_prefix(prefix, state))

    def state_dict(self):
        result = {}
        for prefix, obj in self._objs.items():
            result.update(push_key_prefix(prefix, obj.state_dict()))
        return result

    def to_(self, device):
        """Switches internal storage to specified device."""
        for v in self._objs.values():
            v.to_(device)


def push_key_prefix(prefix, d):
    """
    Returns a dict with the same values as d, but where each key
    adds the prefix, followed by a dot.
    """
    return {prefix + "." + k: v for k, v in d.items()}


def pull_key_prefix(prefix, d):
    """
    Returns a filtered dict of all the items of d that start with
    the given key prefix, plus a dot, with that prefix removed.
    """
    pd = prefix + "."
    lpd = len(pd)
    return {k[lpd:]: v for k, v in d.items() if k.startswith(pd)}


# We wish to be able to save None (null) values in numpy npz files,
# yet do so without setting the unsecure 'allow_pickle' flag.  To do
# that, we will encode null as a special kind of IEEE 754 NaN value.
# Inspired by https://github.com/zuiderkwast/nanbox/blob/master/nanbox.h
# we follow the same Nanboxing scheme used in JavaScriptCore
# (search for JSCJSValue.h#L435), which encodes null values in NaN
# as the NaN value with hex pattern 0xfff8000000000002.

null_numpy_value = numpy.array(
    struct.unpack(">d", struct.pack(">Q", 0xFFF8000000000002))[0], dtype=numpy.float64
)


def is_null_numpy_value(v):
    """
    True if v is a 64-bit float numpy scalar NaN matching null_numpy_value.
    """
    return (
        isinstance(v, numpy.ndarray)
        and numpy.ndim(v) == 0
        and v.dtype == numpy.float64
        and numpy.isnan(v)
        and 0xFFF8000000000002 == struct.unpack(">Q", struct.pack(">d", v))[0]
    )


def box_numpy_null(d):
    """
    Replaces None with null_numpy_value, leaving non-None values unchanged.
    Recursively descends into a dictionary replacing None values.
    """
    try:
        return {k: box_numpy_null(v) for k, v in d.items()}
    except Exception:
        return null_numpy_value if d is None else d


def unbox_numpy_null(d):
    """
    Reverses box_numpy_null, replacing null_numpy_value with None.
    Recursively descends into a dictionary replacing None values.
    """
    try:
        return {k: unbox_numpy_null(v) for k, v in d.items()}
    except Exception:
        return None if is_null_numpy_value(d) else d


def resolve_state_dict(s):
    """
    Resolves a state, which can be a filename or a dict-like object.
    """
    if isinstance(s, str):
        return unbox_numpy_null(numpy.load(s))
    return s


global_load_cache_enabled = True


def load_cached_state(cachefile, args, quiet=False, throw=False):
    """
    Resolves a state, which can be a filename or a dict-like object.
    """
    if not global_load_cache_enabled or cachefile is None:
        return None
    try:
        if isinstance(cachefile, dict):
            dat = cachefile
            cachefile = "state"  # for printed messages
        else:
            dat = unbox_numpy_null(numpy.load(cachefile))
        for a, v in args.items():
            if a not in dat or dat[a] != v:
                if not quiet:
                    print("%s %s changed from %s to %s" % (cachefile, a, dat[a], v))
                return None
    except (FileNotFoundError, ValueError) as e:
        if throw:
            raise e
        return None
    else:
        if not quiet:
            print("Loading cached %s" % cachefile)
        return dat


def save_cached_state(cachefile, obj, args):
    """
    Saves the state_dict of the given object in a dict or npz file.
    """
    if cachefile is None:
        return
    dat = obj.state_dict()
    for a, v in args.items():
        if a in dat:
            assert dat[a] == v
        dat[a] = v
    if isinstance(cachefile, dict):
        cachefile.clear()
        cachefile.update(dat)
    else:
        os.makedirs(os.path.dirname(cachefile), exist_ok=True)
        numpy.savez(cachefile, **box_numpy_null(dat))


class FixedSubsetSampler(Sampler):
    """Represents a fixed sequence of data set indices.
    Subsets can be created by specifying a subset of output indexes.
    """

    def __init__(self, samples):
        self.samples = samples

    def __iter__(self):
        return iter(self.samples)

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, key):
        return self.samples[key]

    def subset(self, new_subset):
        return FixedSubsetSampler(self.dereference(new_subset))

    def dereference(self, indices):
        """
        Translate output sample indices (small numbers indexing the sample)
        to input sample indices (larger number indexing the original full set)
        """
        return [self.samples[i] for i in indices]


class FixedRandomSubsetSampler(FixedSubsetSampler):
    """Samples a fixed number of samples from the dataset, deterministically.
    Arguments:
        data_source,
        sample_size,
        seed (optional)
    """

    def __init__(self, data_source, start=None, end=None, seed=1):
        rng = random.Random(seed)
        shuffled = list(range(len(data_source)))
        rng.shuffle(shuffled)
        self.data_source = data_source
        super(FixedRandomSubsetSampler, self).__init__(shuffled[start:end])

    def class_subset(self, class_filter):
        """
        Returns only the subset matching the given rule.
        """
        if isinstance(class_filter, int):

            def rule(d):
                return d[1] == class_filter

        else:
            rule = class_filter
        return self.subset(
            [i for i, j in enumerate(self.samples) if rule(self.data_source[j])]
        )


def make_loader(
    dataset, sample_size=None, batch_size=1, sampler=None, random_sample=None, **kwargs
):
    """Utility for creating a dataloader on fixed sample subset."""
    import typing

    if isinstance(dataset, typing.Callable):
        # To support deferred dataset loading, support passing a factory
        # that creates the dataset when called.
        dataset = dataset()
    if isinstance(dataset, torch.Tensor):
        # The dataset can be a simple tensor.
        dataset = torch.utils.data.TensorDataset(dataset)
    if sample_size is not None:
        assert sampler is None, "sampler cannot be specified with sample_size"
        if sample_size > len(dataset):
            print(
                "Warning: sample size %d > dataset size %d"
                % (sample_size, len(dataset))
            )
            sample_size = len(dataset)
        if random_sample is None:
            sampler = FixedSubsetSampler(list(range(sample_size)))
        else:
            sampler = FixedRandomSubsetSampler(
                dataset, seed=random_sample, end=sample_size
            )
    return torch.utils.data.DataLoader(
        dataset, sampler=sampler, batch_size=batch_size, **kwargs
    )


# Unit Tests
def _unit_test():
    import warnings

    warnings.filterwarnings("error")
    import argparse
    import random
    import shutil
    import tempfile
    import time

    parser = argparse.ArgumentParser(description="Test things out")
    parser.add_argument("--mode", default="cpu", help="cpu or cuda")
    parser.add_argument("--test_size", type=int, default=1000000)
    args = parser.parse_args()
    testdir = tempfile.mkdtemp()
    batch_size = random.randint(500, 1500)

    # Test NaNboxing.
    assert numpy.isnan(null_numpy_value)
    assert is_null_numpy_value(null_numpy_value)
    assert not is_null_numpy_value(numpy.nan)

    # Test Covariance
    goal = torch.tensor(numpy.random.RandomState(1).standard_normal(10 * 10)).view(
        10, 10
    )
    data = (
        torch.tensor(numpy.random.RandomState(2).standard_normal(args.test_size * 10))
        .view(args.test_size, 10)
        .mm(goal)
    )
    data += torch.randn(1, 10) * 999
    dcov = data.t().cov()
    dcorr = data.t().corrcoef()
    rcov = Covariance()
    rcov.add(data)  # All one batch
    assert (rcov.covariance() - dcov).abs().max() < 1e-16
    cs = CombinedStat(cov=Covariance(), xcov=CrossCovariance())
    ds = torch.utils.data.TensorDataset(data)
    for [a] in tally(cs, ds, batch_size=9876):
        cs.cov.add(a)
        cs.xcov.add(a[:, :3], a[:, 3:])
    assert (data.mean(0) - cs.cov.mean()).abs().max() < 1e-12
    assert (dcov - cs.cov.covariance()).abs().max() < 2e-12
    assert (dcov[:3, 3:] - cs.xcov.covariance()).abs().max() < 1e-12
    assert (dcov.diagonal() - torch.cat(cs.xcov.variance())).abs().max() < 1e-12
    assert (dcorr - cs.cov.correlation()).abs().max() < 2e-12

    # Test CrossCovariance and CrossIoU
    fn = f"{testdir}/cross_cache.npz"
    ds = torch.utils.data.TensorDataset(
        (
            torch.arange(args.test_size)[:, None] % torch.arange(1, 6)[None, :] == 0
        ).double(),
        (
            torch.arange(args.test_size)[:, None] % torch.arange(5, 8)[None, :] == 0
        ).double(),
    )
    c = CombinedStat(c=CrossCovariance(), iou=CrossIoU())
    riou = IoU()
    count = 0
    for [a, b] in tally(c, ds, cache=fn, batch_size=100):
        count += 1
        c.add(a, b)
        riou.add(torch.cat([a, b], dim=1))
    assert count == -(-args.test_size // 100)
    cor = c.c.correlation()
    iou = c.iou.iou()
    assert cor.shape == iou.shape == (5, 3)
    assert iou[4, 0] == 1.0
    assert abs(iou[0, 2] + (-args.test_size // 7 / float(args.test_size))) < 1e-6
    assert abs(cor[4, 0] - 1.0) < 1e-2
    assert abs(cor[0, 2] - 0.0) < 1e-6
    assert all((riou.iou()[:5, -3:] == iou).view(-1))
    assert all(riou.iou().diagonal(0) == 1)
    c = CombinedStat(c=CrossCovariance(), iou=CrossIoU())
    count = 0
    for [a, b] in tally(c, ds, cache=fn, batch_size=10):
        count += 1
        c.add(a, b)
    assert count == 0
    assert all((c.c.correlation() == cor).view(-1))
    assert all((c.iou.iou() == iou).view(-1))

    # Test Concatantaion, Mean, Bincount and tally.
    fn = f"{testdir}/series_cache.npz"
    count = 0
    ds = torch.utils.data.TensorDataset(torch.arange(args.test_size))
    c = CombinedStat(s=History(), m=Mean(), b=Bincount())
    for [b] in tally(c, ds, cache=fn, batch_size=batch_size):
        count += 1
        c.add(b)
    assert count == -(-args.test_size // batch_size)
    assert len(c.s.history()) == args.test_size
    assert c.s.history()[-1] == args.test_size - 1
    assert all(c.s.history() == ds.tensors[0])
    assert all(c.b.bincount() == torch.ones(args.test_size))
    assert c.m.mean() == float(args.test_size - 1) / 2.0
    c2 = CombinedStat(s=History(), m=Mean(), b=Bincount())
    batches = tally(c2, ds, cache=fn)
    assert len(c2.s.history()) == args.test_size
    assert all(c2.s.history() == c.s.history())
    assert all(c2.b.bincount() == torch.ones(args.test_size))
    assert c2.m.mean() == c.m.mean()
    count = 0
    for b in batches:
        count += 1
    assert count == 0  # Shouldn't do anything when it's cached

    # An adverarial case: we keep finding more numbers in the middle
    # as the stream goes on.
    amount = args.test_size
    quantiles = 1000
    data = numpy.arange(float(amount))
    data[1::2] = data[-1::-2] + (len(data) - 1)
    data /= 2
    depth = 50
    alldata = data[:, None] + (numpy.arange(depth) * amount)[None, :]
    actual_sum = torch.FloatTensor(numpy.sum(alldata * alldata, axis=0))
    amt = amount // depth
    for r in range(depth):
        numpy.random.shuffle(alldata[r * amt : r * amt + amt, r])
    if args.mode == "cuda":
        alldata = torch.cuda.FloatTensor(alldata)
        device = torch.device("cuda")
    else:
        alldata = torch.FloatTensor(alldata)
        device = None
    starttime = time.time()
    cs = CombinedStat(
        qc=Quantile(),
        m=Mean(),
        v=Variance(),
        c=Covariance(),
        s=SecondMoment(),
        t=TopK(),
        i=IoU(),
    )
    # Feed data in little batches
    i = 0
    while i < len(alldata):
        batch_size = numpy.random.randint(1000)
        cs.add(alldata[i : i + batch_size])
        i += batch_size
    # Test state dict
    saved = cs.state_dict()
    # numpy.savez(f'{testdir}/saved.npz', **box_numpy_null(saved))
    # saved = unbox_numpy_null(numpy.load(f'{testdir}/saved.npz'))
    cs.save(f"{testdir}/saved.npz")
    loaded = unbox_numpy_null(numpy.load(f"{testdir}/saved.npz"))
    assert set(loaded.keys()) == set(saved.keys())

    # Restore using state=saved in constructor.
    cs2 = CombinedStat(
        qc=Quantile(),
        m=Mean(),
        v=Variance(),
        c=Covariance(),
        s=SecondMoment(),
        t=TopK(),
        i=IoU(),
        state=saved,
    )
    # saved = unbox_numpy_null(numpy.load(f'{testdir}/saved.npz'))
    assert not cs2.qc.device.type == "cuda"
    cs2.to_(device)
    # alldata = alldata.cpu()
    cs2.add(alldata)
    actual_sum *= 2
    # print(abs(alldata.mean(0) - cs2.m.mean()) / alldata.mean())
    assert all(abs(alldata.mean(0) - cs2.m.mean()) / alldata.mean() < 1e-5)
    assert all(abs(alldata.mean(0) - cs2.v.mean()) / alldata.mean() < 1e-5)
    assert all(abs(alldata.mean(0) - cs2.c.mean()) / alldata.mean() < 1e-5)
    # print(abs(alldata.var(0) - cs2.v.variance()) / alldata.var(0))
    assert all(abs(alldata.var(0) - cs2.v.variance()) / alldata.var(0) < 1e-3)
    assert all(abs(alldata.var(0) - cs2.c.variance()) / alldata.var(0) < 1e-2)
    # print(abs(alldata.std(0) - cs2.v.stdev()) / alldata.std(0))
    assert all(abs(alldata.std(0) - cs2.v.stdev()) / alldata.std(0) < 1e-4)
    # print(abs(alldata.std(0) - cs2.c.stdev()) / alldata.std(0))
    assert all(abs(alldata.std(0) - cs2.c.stdev()) / alldata.std(0) < 2e-3)
    moment = (alldata.t() @ alldata) / len(alldata)
    # print(abs(moment - cs2.s.moment()) / moment.abs())
    assert all((abs(moment - cs2.s.moment()) / moment.abs()).view(-1) < 1e-2)
    assert all(alldata.max(dim=0)[0] == cs2.t.topk()[0][:, 0])
    assert cs2.i.iou()[0, 0] == 1
    assert all((cs2.i.iou()[1:, 1:] == 1).view(-1))
    assert all(cs2.i.iou()[1:, 0] < 1)
    assert all(cs2.i.iou()[1:, 0] == cs2.i.iou()[0, 1:])

    # Restore using cs.load() method.
    cs = CombinedStat(
        qc=Quantile(),
        m=Mean(),
        v=Variance(),
        c=Covariance(),
        s=SecondMoment(),
        t=TopK(),
        i=IoU(),
    )
    cs.load(f"{testdir}/saved.npz")
    assert not cs.qc.device.type == "cuda"
    cs.to_(device)
    cs.add(alldata)
    # actual_sum *= 2
    # print(abs(alldata.mean(0) - cs.m.mean()) / alldata.mean())
    assert all(abs(alldata.mean(0) - cs.m.mean()) / alldata.mean() < 1e-5)
    assert all(abs(alldata.mean(0) - cs.v.mean()) / alldata.mean() < 1e-5)
    assert all(abs(alldata.mean(0) - cs.c.mean()) / alldata.mean() < 1e-5)
    # print(abs(alldata.var(0) - cs.v.variance()) / alldata.var(0))
    assert all(abs(alldata.var(0) - cs.v.variance()) / alldata.var(0) < 1e-3)
    assert all(abs(alldata.var(0) - cs.c.variance()) / alldata.var(0) < 1e-2)
    # print(abs(alldata.std(0) - cs.v.stdev()) / alldata.std(0))
    assert all(abs(alldata.std(0) - cs.v.stdev()) / alldata.std(0) < 1e-4)
    # print(abs(alldata.std(0) - cs.c.stdev()) / alldata.std(0))
    assert all(abs(alldata.std(0) - cs.c.stdev()) / alldata.std(0) < 2e-3)
    moment = (alldata.t() @ alldata) / len(alldata)
    # print(abs(moment - cs.s.moment()) / moment.abs())
    assert all((abs(moment - cs.s.moment()) / moment.abs()).view(-1) < 1e-2)
    assert all(alldata.max(dim=0)[0] == cs.t.topk()[0][:, 0])
    assert cs.i.iou()[0, 0] == 1
    assert all((cs.i.iou()[1:, 1:] == 1).view(-1))
    assert all(cs.i.iou()[1:, 0] < 1)
    assert all(cs.i.iou()[1:, 0] == cs.i.iou()[0, 1:])

    # Randomized quantile test
    qc = cs.qc
    ro = qc.readout(1001).cpu()
    endtime = time.time()
    gt = (
        torch.linspace(0, amount, quantiles + 1)[None, :]
        + (torch.arange(qc.depth, dtype=torch.float) * amount)[:, None]
    )
    maxreldev = torch.max(torch.abs(ro - gt) / amount) * quantiles
    print("Randomized quantile test results:")
    print("Maximum relative deviation among %d perentiles: %f" % (quantiles, maxreldev))
    minerr = torch.max(
        torch.abs(
            qc.minmax().cpu()[:, 0] - torch.arange(qc.depth, dtype=torch.float) * amount
        )
    )
    maxerr = torch.max(
        torch.abs(
            (qc.minmax().cpu()[:, -1] + 1)
            - (torch.arange(qc.depth, dtype=torch.float) + 1) * amount
        )
    )
    print("Minmax error %f, %f" % (minerr, maxerr))
    interr = torch.max(
        torch.abs(qc.integrate(lambda x: x * x).cpu() - actual_sum) / actual_sum
    )
    print("Integral error: %f" % interr)
    medianerr = torch.max(
        torch.abs(qc.median() - alldata.median(0)[0]) / alldata.median(0)[0]
    ).cpu()
    print("Median error: %f" % medianerr)
    meanerr = torch.max(torch.abs(qc.mean() - alldata.mean(0)) / alldata.mean(0)).cpu()
    print("Mean error: %f" % meanerr)
    varerr = torch.max(torch.abs(qc.variance() - alldata.var(0)) / alldata.var(0)).cpu()
    print("Variance error: %f" % varerr)
    counterr = (
        (qc.integrate(lambda x: torch.ones(x.shape[-1]).cpu()) - qc.size())
        / (0.0 + qc.size())
    ).item()
    print("Count error: %f" % counterr)
    print("Time %f" % (endtime - starttime))
    # Algorithm is randomized, so some of these will fail with low probability.
    assert maxreldev < 1.0
    assert minerr == 0.0
    assert maxerr == 0.0
    assert interr < 0.01
    assert abs(counterr) < 0.001
    shutil.rmtree(testdir, ignore_errors=True)
    print("OK")


if __name__ == "__main__":
    _unit_test()