File size: 6,949 Bytes
d6682b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from pathlib import Path

import torch
from datasets import load_dataset
from tqdm.auto import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer

from ...util.globals import *
from ...util.nethook import Trace, set_requires_grad
from ...util.runningstats import CombinedStat, Mean, NormMean, SecondMoment, tally

from .tok_dataset import (
    TokenizedDataset,
    dict_to_,
    flatten_masked_batch,
    length_collation,
)

STAT_TYPES = {
    "mom2": SecondMoment,
    "mean": Mean,
    "norm_mean": NormMean,
}


def main():
    """
    Command-line utility to precompute cached stats.
    """
    import argparse

    parser = argparse.ArgumentParser(description="ROME Statistics Collector")

    def aa(*args, **kwargs):
        parser.add_argument(*args, **kwargs)

    aa("--model_name", default="gpt2-xl", choices=["gpt2-xl", "EleutherAI/gpt-j-6B"])
    aa("--dataset", default="wikipedia", choices=["wikitext", "wikipedia"])
    aa("--layers", default=[17], type=lambda x: list(map(int, x.split(","))))
    aa("--to_collect", default=["mom2"], type=lambda x: x.split(","))
    aa("--sample_size", default=100000, type=lambda x: None if x == "all" else int(x))
    aa("--batch_tokens", default=None, type=lambda x: None if x == "any" else int(x))
    aa("--precision", default="float32", choices=["float64", "float32", "float16"])
    aa("--stats_dir", default=STATS_DIR)
    aa("--download", default=1, type=int, choices=[0, 1])
    args = parser.parse_args()

    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    model = AutoModelForCausalLM.from_pretrained(args.model_name).eval().cuda()
    set_requires_grad(False, model)

    for layer_num in args.layers:
        print(
            f"Computing stats for layer {layer_num} of {args.model_name} "
            f'over {args.sample_size or "all"} samples of {args.dataset}. '
            "Note, the statistics are collected over the inputs to the second MLP layer, "
            "or equivalently the outputs of the first MLP layer."
        )
        proj_layer_name = "c_proj" if "gpt2" in args.model_name else "fc_out"
        layer_name = f"transformer.h.{layer_num}.mlp.{proj_layer_name}"

        layer_stats(
            model,
            tokenizer,
            layer_name,
            args.stats_dir,
            args.dataset,
            args.to_collect,
            sample_size=args.sample_size,
            precision=args.precision,
            batch_tokens=args.batch_tokens,
            download=args.download,
        )


def layer_stats(
    model,
    tokenizer,
    layer_name,
    stats_dir,
    ds_name,
    to_collect,
    model_name=None,
    sample_size=None,
    precision=None,
    batch_tokens=None,
    download=True,
    progress=tqdm,
    force_recompute=False,
    hparams=None
):
    """
    Function to load or compute cached stats.
    """

    def get_ds():
        # Load_From_File
        # from datasets import Dataset
        # raw_ds = Dataset.from_file('XXX/XXX/wikipedia-train.arrow')
        # raw_ds = {'train': raw_ds}
        raw_ds = load_dataset(
            ds_name,
            dict(wikitext="wikitext-103-raw-v1", wikipedia="20200501.en")[ds_name]
        )
        if hasattr(model.config, 'n_positions'):
            maxlen = model.config.n_positions
        elif hasattr(model.config, 'max_sequence_length'):
            maxlen = model.config.max_sequence_length
        elif hasattr(model.config, 'max_position_embeddings'):
            maxlen = model.config.max_position_embeddings
        elif hasattr(model.config,'seq_length'):
            maxlen = model.config.seq_length
        else:
            raise NotImplementedError
                
        if hasattr(model.config, 'model_type') and 'mistral' in model.config.model_type:
            if hasattr(model.config, 'sliding_window') and model.config.sliding_window:
                maxlen = model.config.sliding_window or 4096
            else:
                maxlen = 4096
        
        if batch_tokens is not None and batch_tokens < maxlen:
            maxlen = batch_tokens
        return TokenizedDataset(raw_ds["train"], tokenizer, maxlen=maxlen)

    # Continue with computation of statistics
    batch_size = 100  # Examine this many dataset texts at once
    if hasattr(model.config, 'n_positions'):
        npos = model.config.n_positions
    elif hasattr(model.config, 'max_sequence_length'):
        npos = model.config.max_sequence_length
    elif hasattr(model.config, 'max_position_embeddings'):
        npos = model.config.max_position_embeddings
    elif hasattr(model.config,'seq_length'):
        npos = model.config.seq_length
    else:
        raise NotImplementedError
        
    if hasattr(model.config, 'model_type') and 'mistral' in model.config.model_type:
        if hasattr(model.config, 'sliding_window') and model.config.sliding_window:
            npos = model.config.sliding_window or 4096
        else:
            npos = 4096
    
    if batch_tokens is None:
        batch_tokens = npos * 3  # Sort and divide into batches with this many tokens
    if precision is None:
        precision = "float64"
    dtype = getattr(torch, precision)
    size_suffix = "" if sample_size is None else f"_{sample_size}"
    if batch_tokens < npos:
        size_suffix = "_t{batch_tokens}" + size_suffix
    if model_name is None:
        # model_name = model.config._name_or_path.replace("/", "_")
        model_name = model.config._name_or_path.rsplit("/")[-1]

    stats_dir = Path(stats_dir)
    file_extension = f"{model_name}/{ds_name}_stats/{layer_name}_{precision}_{'-'.join(sorted(to_collect))}{size_suffix}.npz"
    filename = stats_dir / file_extension

    print(f"Computing Cov locally....")

    ds = get_ds() if not filename.exists() else None

    if progress is None:
        progress = lambda x: x

    stat = CombinedStat(**{k: STAT_TYPES[k]() for k in to_collect})
    loader = tally(
        stat,
        ds,
        cache=(filename if not force_recompute else None),
        sample_size=sample_size,
        batch_size=batch_size,
        collate_fn=length_collation(batch_tokens),
        pin_memory=True,
        random_sample=1,
        num_workers=2,
    )
    batch_count = -(-(sample_size or len(ds)) // batch_size)
    with torch.no_grad():
        for batch_group in progress(loader, total=batch_count):
            for batch in batch_group:
                batch = dict_to_(batch, f"cuda:{hparams.device}")
                with Trace(
                    model, layer_name, retain_input=True, retain_output=False, stop=True
                ) as tr:
                    model(**batch)
                feats = flatten_masked_batch(tr.input, batch["attention_mask"])
                # feats = flatten_masked_batch(tr.output, batch["attention_mask"])
                feats = feats.to(dtype=dtype)
                stat.add(feats)
    return stat


if __name__ == "__main__":
    main()