ZJUPeng's picture
add continuous
d6682b6
raw
history blame
22.7 kB
import copy
import random
import torch
from torch.nn import functional as F
from .utils import parent_module, brackets_to_periods, EarlyStopMeter, EditingMeanAct
import transformers
import numpy as np
from torch import Tensor
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from .merge import slerp, GTA, linear
import torch.nn as nn
import gc
merge_dict = {
'slerp': slerp(),
'ties': GTA('magnitude', 'sum', normalize=True),
'magnitude_norm': GTA('magnitude', None, normalize=True),
'magnitude': GTA('magnitude', None, normalize=False),
'sign': GTA(None, 'sum', normalize=True),
'dare_ties': GTA('rescaled_random', 'sum'),
'dare_linear': GTA('random', None),
'linear': linear()
}
edit_history = []
merge_group_edit_history = []
def euc(query, key, config, act_mask=None, infer=False):
# Euclidean distance
act_fn = ACT2FN[config.hidden_act]
l2_norm = torch.norm(act_fn(key) - act_fn(query), dim=-1)
if infer and l2_norm.size(1) > 100:
topk = torch.topk(l2_norm, k=1, largest=True)
return topk.values.mean()
if act_mask is not None:
return torch.sum(l2_norm * act_mask, dim=1) / torch.sum(act_mask, dim=1)
else:
return torch.mean(l2_norm, dim=-1)
class WISE(torch.nn.Module):
def __init__(self, config, model, device):
super(WISE, self).__init__()
self.config = config
self.model = model
self.config = config
if hasattr(self.model.config, 'hidden_act'):
self.config.hidden_act = self.model.config.hidden_act
elif hasattr(self.model.config, 'activation_function'):
self.config.hidden_act = self.model.config.activation_function
# self.tokenizer = model.tokenizer
layer = config.inner_params[0]
self.device = device
self.adapter_layer = None
self.original_layer = None
# --- ensure proper formatting (WISE edits weights matrices) ---
suffixes = [".weight", ".bias"]
self.layer = layer.rsplit(".", 1)[0] if any(layer.endswith(x) for x in suffixes) else layer
for n, p in self.model.named_parameters():
p.requires_grad = False
if isinstance(self.model, transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel):
conv1D = True
else:
conv1D = False
# --- Add WISE to chosen layers ---
self.edit_module = parent_module(self.model, brackets_to_periods(self.layer))
self.layer_name = self.layer.rsplit(".", 1)[-1]
adapter_layer = getattr(self.edit_module, self.layer_name)
if type(adapter_layer) is not WISEAdapter:
setattr(self.edit_module, self.layer_name, WISEAdapter(config, adapter_layer, conv1D=conv1D))
self.original_layer = copy.deepcopy(adapter_layer)
print(f"New weights successfully inserted into {layer}")
gc.collect()
torch.cuda.empty_cache()
gc.collect()
# Forward
def __call__(self, **kwargs):
if not self.config.retrieve:
if hasattr(self.get_adapter_layer(), 'editing') and not self.get_adapter_layer().editing:
# final merge
if not self.get_adapter_layer().original_layer.weight.equal(self.get_adapter_layer().new_weight) and self.get_adapter_layer().editing_total_cnt >= self.config.save_freq:
self.get_adapter_layer().memory_weight.append(self.get_adapter_layer().new_weight)
if len(self.get_adapter_layer().memory_weight) > 0 and self.get_adapter_layer().editing_total_cnt >= self.config.save_freq:
print('length of memory is ', len(self.get_adapter_layer().memory_weight), '!!!!!!')
self.get_adapter_layer().merge_weight()
return self.model(**kwargs)
def reset_layer(self):
layer = getattr(self.edit_module, self.layer_name)
del layer
setattr(self.edit_module, self.layer_name, self.get_adapter_layer().original_layer)
def get_adapter_layer(self):
adapter_layer = getattr(self.edit_module, self.layer_name)
assert type(adapter_layer) is WISEAdapter, print('Adapter Layer is not added correctly....')
return adapter_layer
# TODO: generation
def generate(self, *args, **kwargs):
setattr(eval(f"self.model.{self.layer}"), "key_id", -1)
return self.model.generate(*args, **kwargs)
def edit(self, config, tokens, act_mask=None, deact_mask=None):
# for retrieve ##
global edit_history
global merge_group_edit_history
edit_history.append([{f"{k1}" : v1.to('cpu') for k1, v1 in tokens.items()}, False])
# for retrieve ##
last_prompt_token_loc = (tokens["labels"] == -100).sum(dim=-1) - 1
setattr(eval(f"self.model.{self.layer}"), "training", True)
setattr(eval(f"self.model.{self.layer}"), "editing", True)
self.get_adapter_layer().set_parameter_tunable()
if getattr(eval(f"self.model.{self.layer}"), "editing_total_cnt") % self.config.save_freq == 0:
self.get_adapter_layer().generate_activation_mask(self.config.mask_ratio)
# --- train Wise value ---
loss_meter = EarlyStopMeter()
for i in range(config.n_iter):
if i == 0:
# --- we only need to create an optimizer for the first iteration (but forward pass instantiates the key, so optimzer is passed after first inference) ---
optimizer = torch.optim.SGD([self.get_adapter_layer().new_weight], config.edit_lr, weight_decay=1e-5)
ft_loss = self.__cal_ft_loss(tokens, last_prompt_token_loc)
act_loss = self.__cal_activation_loss(self.get_adapter_layer().original_layer_output, self.get_adapter_layer().new_weight_layer_output,
config=config, act_mask=act_mask, deact_mask=deact_mask)
loss = ft_loss + act_loss.to(ft_loss.device)
if loss_meter.stop():
self.get_adapter_layer().save_editing_activation() # add last gradient
break
if i == config.n_iter - 1:
self.get_adapter_layer().save_editing_activation() # add last gradient
if self.config.retrieve and self.get_adapter_layer().merge_cnt > 0 and self.config.replay:
memory_loss = []
for _ in merge_group_edit_history:
idx = 0
while True:
memo_input, is_used = _[idx]
if not is_used:
_[idx][1] = True
break
idx += 1
if idx == len(_): ## re Assign
for m in range(len(_)):
_[m][1] = False
idx = 0
memo_input = {f"{k1}" : v1.to(self.config.device) for k1, v1 in memo_input.items()}
self.model(**memo_input)
memory_act_loss = self.__cal_memory_neg_activation_loss(self.get_adapter_layer().original_layer_output,
self.get_adapter_layer().new_weight_layer_output, config=config,
act_mask=act_mask, deact_mask=deact_mask)
memory_loss.append(memory_act_loss.to(ft_loss.device))
del memo_input
neg_memo_loss = torch.stack(memory_loss).mean()
loss += neg_memo_loss
if len(edit_history) > 0:
memo_input = random.choice(edit_history)[0]
memo_input = {f"{k1}" : v1.to(self.config.device) for k1, v1 in memo_input.items()}
self.model(**memo_input)
pos_memo_loss = self.__cal_memory_pos_activation_loss(self.get_adapter_layer().original_layer_output,
self.get_adapter_layer().new_weight_layer_output, config=config,
act_mask=act_mask, deact_mask=deact_mask)
del memo_input
loss += pos_memo_loss.to(ft_loss.device)
# for replay Appendix B.3
optimizer.zero_grad()
loss.backward()
self.get_adapter_layer().mask_new_weight_gradient()
if self.config.retrieve and self.get_adapter_layer().merge_cnt > 0 and self.config.replay:
print(
f"loss {np.round(loss.item(), 3)} = {np.round(ft_loss.item(), 3)} + {np.round(act_loss.item(), 3)} + {np.round(neg_memo_loss.item(), 3)} + {np.round(pos_memo_loss.item(), 3)}"
)
else:
print(
f"loss {np.round(loss.item(), 3)} = {np.round(ft_loss.item(), 3)} + {np.round(act_loss.item(), 3)}"
)
optimizer.step()
loss_meter.update(loss.item())
if type(self.config.norm_constraint) is float:
self.__norm_constraint(self.config.norm_constraint)
# --- pull out info we want to log from the Wise layer ---
setattr(eval(f"self.model.{self.layer}"), "editing", False)
setattr(eval(f"self.model.{self.layer}"), "training", False)
editing_total_cnt = getattr(eval(f"self.model.{self.layer}"), "editing_total_cnt") + 1
setattr(eval(f"self.model.{self.layer}"), "editing_total_cnt", editing_total_cnt)
#
if self.config.save_freq is not None and editing_total_cnt % self.config.save_freq == 0:
self.get_adapter_layer().save_weight()
print(f'Add New Weight to Memory...')
if editing_total_cnt % self.config.merge_freq == 0:
# for retrieve ##
merge_group_edit_history.append(edit_history)
edit_history = []
# for retrieve ##
self.get_adapter_layer().merge_weight()
print(f'Merge Weight of (New, Original) Matrix... with {self.config.merge_alg}')
def __norm_constraint(self, norm_constraint):
new_weight = self.get_adapter_layer().new_weight
original_weight = self.get_adapter_layer().weight
with torch.no_grad():
new_weight[...] = torch.clamp(
new_weight, min=original_weight - norm_constraint, max=original_weight + norm_constraint
)
def __cal_ft_loss(self, tokens, last_prompt_token_loc):
k = 1
bs = tokens["input_ids"].shape[0] - k
logits = self.model(**tokens).logits
shift_logits = logits[:-k, :-1, :].contiguous()
shift_labels = tokens['labels'][:-k, 1:].contiguous()
label_mask = torch.zeros_like(shift_labels, dtype=torch.bool)
for i, col_index in enumerate(last_prompt_token_loc[:-k]):
label_mask[i, col_index-1:] = True
shift_labels[~label_mask] = -100
log_probs = -nn.functional.log_softmax(shift_logits, dim=-1)
if shift_labels.dim() == log_probs.dim() - 1:
shift_labels = shift_labels.unsqueeze(-1)
padding_mask = shift_labels.eq(-100)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
shift_labels = torch.clamp(shift_labels, min=0)
nll_loss = log_probs.gather(dim=-1, index=shift_labels)
nll_loss.masked_fill_(padding_mask, 0.0)
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
return nll_loss
# loss_fct = CrossEntropyLoss(reduction='none')
# loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# loss = loss.view(bs, -1)
# label_mask = torch.zeros_like(loss, dtype=torch.bool)
# for i, col_index in enumerate(last_prompt_token_loc[:-k]):
# label_mask[i, col_index - 1:] = True
# ft_loss = ((loss * label_mask).sum(1) / label_mask.sum(1)).mean()
# return ft_loss
def __cal_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
deact_mask=None):
k = 1
if act_mask is not None:
in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config,
act_mask=act_mask)
out_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config,
act_mask=deact_mask)
else:
in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
out_scope_dist = euc(original_layer_output[-k:, ...], new_weight_layer_output[-k:, ...], config)
loss = out_scope_dist.view(-1,1) - in_scope_dist + config.gamma
loss2 = out_scope_dist - config.alpha
loss3 = config.beta - in_scope_dist
loss3 = torch.mean(loss3[loss3 > 0]) if min(loss3[loss3 > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
loss2 = torch.mean(loss2[loss2 > 0]) if min(loss2[loss2 > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
loss = torch.mean(loss[loss > 0]) if min(loss[loss > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
return loss + loss2 + loss3
def __cal_memory_pos_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
deact_mask=None):
k = 1
in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
loss4 = 20 - in_scope_dist
return torch.mean(loss4[loss4 > 0]) if min(loss4[loss4 > 0].size()) > 0 else torch.tensor(0.)
def __cal_memory_neg_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
deact_mask=None):
k = 1
in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
loss4 = in_scope_dist - 5
return torch.mean(loss4[loss4 > 0]) if min(loss4[loss4 > 0].size()) > 0 else torch.tensor(0.)
class WISEAdapter(torch.nn.Module):
def __init__(self, config, layer, conv1D):
super(WISEAdapter, self).__init__()
self.layer = layer
self.weight = self.layer.weight
self.device = layer.weight.device
self.config = config
self.new_weight = copy.deepcopy(self.weight)
self.original_layer = copy.deepcopy(self.layer)
self.memory_weight = []
self.memory_mean_act = []
self.merge_cnt = 0 # only for retrieve
assert not self.weight.requires_grad, print('Original Layer can not be tunable....')
self.used_mask = None
self.training = False
self.editing = False
self.conv1D = conv1D
self.editing_mean_act = EditingMeanAct()
self.editing_total_cnt = 0
def set_parameter_tunable(self):
self.new_weight.requires_grad = True
def save_weight(self):
self.memory_weight.append(copy.deepcopy(self.new_weight))
self.new_weight = copy.deepcopy(self.original_layer.weight)
if self.config.retrieve:
self.memory_mean_act.append(copy.deepcopy(self.editing_mean_act))
self.editing_mean_act = EditingMeanAct()
def merge_weight(self):
if self.config.save_freq is not None: # for ties dare dare_ties
if not self.config.retrieve:
merge_alg = merge_dict[self.config.merge_alg]
if self.original_layer.weight.equal(self.layer.weight):
cur_new_weight = merge_alg.execute([self.config.weights / len(self.memory_weight) for _ in range(len(self.memory_weight))], self.original_layer.weight, self.memory_weight, densities=self.config.densities)
else:
cur_new_weight = merge_alg.execute([0.4 / len(self.memory_weight) for _ in range(len(self.memory_weight))] + [0.6], self.original_layer.weight, self.memory_weight + [self.layer.weight], densities=self.config.densities)
self.layer.weight = torch.nn.Parameter(cur_new_weight.to(self.layer.weight.device), requires_grad=False)
self.new_weight = copy.deepcopy(self.original_layer.weight)
del self.memory_weight
self.memory_weight = []
else:
merge_alg = merge_dict[self.config.merge_alg]
merge_num = self.config.merge_freq // self.config.save_freq
assert len(self.memory_weight) >= merge_num
new_merge_weight = merge_alg.execute([self.config.weights / merge_num for _ in range(merge_num)], self.original_layer.weight, self.memory_weight[-merge_num:], densities=self.config.densities)
min_a = 1e9
for _ in range(merge_num):
self.memory_weight.pop()
edit_act = self.memory_mean_act.pop()
min_a = min(min_a, edit_act.min_act())
self.new_weight = copy.deepcopy(self.original_layer.weight)
self.memory_weight.append(new_merge_weight)
self.memory_mean_act.append(EditingMeanAct(min_a=min_a))
print(len(self.memory_weight))
assert len(self.memory_mean_act) == len(self.memory_weight)
self.merge_cnt += 1
else:
merge_alg = merge_dict[self.config.merge_alg]
cur_new_weight = merge_alg.execute(0.5, self.layer.weight, [self.new_weight],
densities=self.config.densities)
self.layer.weight = torch.nn.Parameter(cur_new_weight.to(self.layer.weight.device), requires_grad=False)
self.new_weight = copy.deepcopy(self.original_layer.weight)
def save_editing_activation(self):
in_scope_dist = euc(self.original_layer_output[:-1, ...], self.new_weight_layer_output[:-1, ...], self.config)
self.editing_mean_act.update(in_scope_dist.mean().item())
def generate_activation_mask(self, mask_ratio):
p_grad = self.new_weight.reshape(-1)
p_mask = np.random.choice([1, 0], size=p_grad.size()[0], p=[mask_ratio, 1 - mask_ratio])
p_mask = torch.from_numpy(p_mask).to(p_grad.device)
self.weight_mask = p_mask
def generate_non_overlapping_mask(self, mask_ratio):
p_grad = self.new_weight.reshape(-1)
mask_size = int(mask_ratio * p_grad.size()[0])
if self.used_mask is None:
self.used_mask = np.zeros(p_grad.size()[0], dtype=bool)
available_indices = np.where(~self.used_mask)[0] # 获取未被遮罩的元素索引
if len(available_indices) < mask_size:
raise ValueError("Not enough unused elements to generate a new mask.")
chosen_indices = np.random.choice(available_indices, size=mask_size, replace=False)
mask_array = np.zeros(p_grad.size()[0], dtype=int)
mask_array[chosen_indices] = 1
self.used_mask[chosen_indices] = True # 更新遮罩状态
self.weight_mask = torch.from_numpy(mask_array).to(p_grad.device)
def new_weight_forward(self, input: Tensor, weight) -> Tensor:
if self.conv1D:
size_out = input.size()[:-1] + (weight.size(1),)
input = torch.addmm(self.original_layer.bias, input.view(-1, input.size(-1)), weight)
input = input.view(size_out)
return input
else:
return F.linear(input, weight)
def mask_new_weight_gradient(self):
assert self.new_weight.grad is not None, print('Gradient Collection for New Weight error, gradient not found')
# Add gradient mask after the loss updates
p_size = self.new_weight.grad.size()
p_grad = self.new_weight.grad.reshape(-1)
# mask = torch.from_numpy(np.random.choice([0, 1], size=p_grad.size()[0], p=[.1, .9])).cuda()
p_grad = p_grad * self.weight_mask
self.new_weight.grad = p_grad.view(p_size).to(self.new_weight.grad.dtype)
def forward(self, *args):
if self.editing:
layer_out = self.new_weight_forward(*args, self.new_weight)
self.new_weight_layer_output = layer_out
self.original_layer_output = self.original_layer(*args)
else:
if not self.config.retrieve:
original_layer_output = self.original_layer(*args)
layer_output = self.layer(*args)
new_weight_layer_output = self.new_weight_forward(*args, self.new_weight)
dist2 = euc(original_layer_output, new_weight_layer_output, self.config, infer=True)
dist1 = euc(original_layer_output, layer_output, self.config, infer=True)
threshold = self.editing_mean_act.min_act() * self.config.act_ratio
if dist1.item() < threshold and dist2.item() < threshold:
layer_out = original_layer_output
elif dist1.item() > dist2.item():
layer_out = layer_output
else:
layer_out = new_weight_layer_output
else:
original_layer_output = self.original_layer(*args)
new_weight_layer_output = self.new_weight_forward(*args, self.new_weight)
dist1 = euc(original_layer_output, new_weight_layer_output, self.config, infer=True)
threshold = self.editing_mean_act.min_act() * self.config.act_ratio
min_dist = dist1
if min_dist.item() < threshold:
layer_out = original_layer_output
else:
layer_out = new_weight_layer_output
for i in range(len(self.memory_weight)):
memory_retrieve_weight = self.memory_weight[i]
memory_weight_layer_output = self.new_weight_forward(*args, memory_retrieve_weight)
dist = euc(original_layer_output, memory_weight_layer_output, self.config, infer=True)
if dist > min_dist and dist > self.memory_mean_act[i].min_act() * self.config.act_ratio:
layer_out = memory_weight_layer_output
min_dist = dist
print(dist, self.memory_mean_act[i].min_act() * self.config.act_ratio)
return layer_out