|
import numpy as np |
|
import torch |
|
from typing import Union, List |
|
|
|
def lerp( |
|
t: float, v0: Union[np.ndarray, torch.Tensor], v1: Union[np.ndarray, torch.Tensor] |
|
) -> Union[np.ndarray, torch.Tensor]: |
|
return (1 - t) * v0 + t * v1 |
|
|
|
def maybe_torch(v: np.ndarray, is_torch: bool): |
|
if is_torch: |
|
return torch.from_numpy(v) |
|
return v |
|
|
|
|
|
def normalize(v: np.ndarray, eps: float): |
|
norm_v = np.linalg.norm(v) |
|
if norm_v > eps: |
|
v = v / norm_v |
|
return v |
|
|
|
class slerp: |
|
def __init__(self): |
|
pass |
|
def execute( |
|
self, |
|
t: Union[float, List[float]], |
|
v0: Union[List[torch.Tensor], torch.Tensor], |
|
v1: Union[List[torch.Tensor], torch.Tensor], |
|
DOT_THRESHOLD: float = 0.9995, |
|
eps: float = 1e-8, |
|
densities = None, |
|
): |
|
if type(v0) is list: |
|
v0 = v0[0] |
|
if type(v1) is list: |
|
v1 = v1[0] |
|
if type(t) is list: |
|
t = t[0] |
|
""" |
|
Spherical linear interpolation |
|
|
|
From: https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c |
|
Args: |
|
t (float/np.ndarray): Float value between 0.0 and 1.0 |
|
v0 (np.ndarray): Starting vector |
|
v1 (np.ndarray): Final vector |
|
DOT_THRESHOLD (float): Threshold for considering the two vectors as |
|
colinear. Not recommended to alter this. |
|
Returns: |
|
v2 (np.ndarray): Interpolation vector between v0 and v1 |
|
""" |
|
is_torch = False |
|
if not isinstance(v0, np.ndarray): |
|
is_torch = True |
|
v0 = v0.detach().cpu().float().numpy() |
|
if not isinstance(v1, np.ndarray): |
|
is_torch = True |
|
v1 = v1.detach().cpu().float().numpy() |
|
|
|
|
|
v0_copy = np.copy(v0) |
|
v1_copy = np.copy(v1) |
|
|
|
|
|
v0 = normalize(v0, eps) |
|
v1 = normalize(v1, eps) |
|
|
|
|
|
dot = np.sum(v0 * v1) |
|
|
|
|
|
if np.abs(dot) > DOT_THRESHOLD: |
|
res = lerp(t, v0_copy, v1_copy) |
|
return maybe_torch(res, is_torch) |
|
|
|
|
|
theta_0 = np.arccos(dot) |
|
sin_theta_0 = np.sin(theta_0) |
|
|
|
|
|
theta_t = theta_0 * t |
|
sin_theta_t = np.sin(theta_t) |
|
|
|
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 |
|
s1 = sin_theta_t / sin_theta_0 |
|
res = s0 * v0_copy + s1 * v1_copy |
|
|
|
return maybe_torch(res, is_torch) |