EasyEdit / easyeditor /models /rome /tok_dataset.py
ZJUPeng's picture
add continuous
d6682b6
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset
class TokenizedDataset(Dataset):
"""
Converts a dataset of text samples into a dataset of token sequences,
as converted by a supplied tokenizer. The tokens come along with position
ids and attention masks, they can be supplied direcly to the model.
"""
def __init__(self, text_dataset, tokenizer=None, maxlen=None, field="text"):
self.text_dataset = text_dataset
self.field = field
self.tokenizer = tokenizer
self.maxlen = maxlen
if hasattr(text_dataset, "info"):
self.info = text_dataset.info
def __len__(self):
return len(self.text_dataset)
def __getitem__(self, i):
text = self.text_dataset[i]
if self.field is not None:
text = text[self.field]
token_list = self.tokenizer.encode(
text, truncation=True, max_length=self.maxlen
)
position_ids = list(range(len(token_list)))
attention_mask = [1] * len(token_list)
return dict(
input_ids=torch.tensor(token_list),
position_ids=torch.tensor(position_ids),
attention_mask=torch.tensor(attention_mask),
)
def dict_to_(data, device):
"""
Moves a dictionary of tensors to the specified device.
"""
for k in data:
data[k] = data[k].to(device)
return data
def length_collation(token_size):
"""
Sorts a batch of sequences and breaks it up into subbatches
of same-sized sequences, padding as needed. Each batch
has no more than token_size total tokens (or a single
sequence, if the sequence happens to be larger).
"""
def collate_fn(items):
items = sorted(items, key=lambda x: -len(x["input_ids"]))
batches = []
batch = []
batch_width = 0
for item in items:
item_width = len(item["input_ids"])
if item_width == 0:
break
if batch_width * (len(batch) + 1) > token_size:
batches.append(make_padded_batch(batch))
batch = []
batch_width = 0
if not batch:
batch_width = item_width
batch.append(item)
if len(batch):
batches.append(make_padded_batch(batch))
return batches
return collate_fn
def make_padded_batch(items):
"""
Pads sequences in a batch, so they are all the same length as the longest.
"""
max_len = max(len(d["input_ids"]) for d in items)
if max_len == 0:
return {k: torch.zeros((0, 0), dtype=torch.long) for k in items[0]}
return {
k: pad_sequence([d[k] for d in items if len(d["input_ids"])], batch_first=True)
for k, v in items[0].items()
}
def flatten_masked_batch(data, mask):
"""
Flattens feature data, ignoring items that are masked out of attention.
"""
flat_data = data.view(-1, data.size(-1))
attended_tokens = mask.view(-1).nonzero()[:, 0]
return flat_data[attended_tokens]