File size: 14,933 Bytes
d2fa653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import logging
import math

import torch
import torch.nn as nn
from torch.nn import functional as F

from modules.commons.espnet_positional_embedding import RelPositionalEncoding
from modules.commons.common_layers import SinusoidalPositionalEmbedding, Linear, EncSALayer, DecSALayer, BatchNorm1dTBC
from utils.hparams import hparams

DEFAULT_MAX_SOURCE_POSITIONS = 2000
DEFAULT_MAX_TARGET_POSITIONS = 2000


class TransformerEncoderLayer(nn.Module):
    def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'):
        super().__init__()
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_heads = num_heads
        self.op = EncSALayer(
            hidden_size, num_heads, dropout=dropout,
            attention_dropout=0.0, relu_dropout=dropout,
            kernel_size=kernel_size
            if kernel_size is not None else hparams['enc_ffn_kernel_size'],
            padding=hparams['ffn_padding'],
            norm=norm, act=hparams['ffn_act'])

    def forward(self, x, **kwargs):
        return self.op(x, **kwargs)


######################
# fastspeech modules
######################
class LayerNorm(torch.nn.LayerNorm):
    """Layer normalization module.
    :param int nout: output dim size
    :param int dim: dimension to be normalized
    """

    def __init__(self, nout, dim=-1):
        """Construct an LayerNorm object."""
        super(LayerNorm, self).__init__(nout, eps=1e-12)
        self.dim = dim

    def forward(self, x):
        """Apply layer normalization.
        :param torch.Tensor x: input tensor
        :return: layer normalized tensor
        :rtype torch.Tensor
        """
        if self.dim == -1:
            return super(LayerNorm, self).forward(x)
        return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)


class DurationPredictor(torch.nn.Module):
    """Duration predictor module.
    This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
    The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder.
    .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
        https://arxiv.org/pdf/1905.09263.pdf
    Note:
        The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`,
        the outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
    """

    def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, padding='SAME'):
        """Initilize duration predictor module.
        Args:
            idim (int): Input dimension.
            n_layers (int, optional): Number of convolutional layers.
            n_chans (int, optional): Number of channels of convolutional layers.
            kernel_size (int, optional): Kernel size of convolutional layers.
            dropout_rate (float, optional): Dropout rate.
            offset (float, optional): Offset value to avoid nan in log domain.
        """
        super(DurationPredictor, self).__init__()
        self.offset = offset
        self.conv = torch.nn.ModuleList()
        self.kernel_size = kernel_size
        self.padding = padding
        for idx in range(n_layers):
            in_chans = idim if idx == 0 else n_chans
            self.conv += [torch.nn.Sequential(
                torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
                                       if padding == 'SAME'
                                       else (kernel_size - 1, 0), 0),
                torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
                torch.nn.ReLU(),
                LayerNorm(n_chans, dim=1),
                torch.nn.Dropout(dropout_rate)
            )]
        if hparams['dur_loss'] in ['mse', 'huber']:
            odims = 1
        elif hparams['dur_loss'] == 'mog':
            odims = 15
        elif hparams['dur_loss'] == 'crf':
            odims = 32
            from torchcrf import CRF
            self.crf = CRF(odims, batch_first=True)
        self.linear = torch.nn.Linear(n_chans, odims)

    def _forward(self, xs, x_masks=None, is_inference=False):
        xs = xs.transpose(1, -1)  # (B, idim, Tmax)
        for f in self.conv:
            xs = f(xs)  # (B, C, Tmax)
            if x_masks is not None:
                xs = xs * (1 - x_masks.float())[:, None, :]

        xs = self.linear(xs.transpose(1, -1))  # [B, T, C]
        xs = xs * (1 - x_masks.float())[:, :, None]  # (B, T, C)
        if is_inference:
            return self.out2dur(xs), xs
        else:
            if hparams['dur_loss'] in ['mse']:
                xs = xs.squeeze(-1)  # (B, Tmax)
        return xs

    def out2dur(self, xs):
        if hparams['dur_loss'] in ['mse']:
            # NOTE: calculate in log domain
            xs = xs.squeeze(-1)  # (B, Tmax)
            dur = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long()  # avoid negative value
        elif hparams['dur_loss'] == 'mog':
            return NotImplementedError
        elif hparams['dur_loss'] == 'crf':
            dur = torch.LongTensor(self.crf.decode(xs)).cuda()
        return dur

    def forward(self, xs, x_masks=None):
        """Calculate forward propagation.
        Args:
            xs (Tensor): Batch of input sequences (B, Tmax, idim).
            x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
        Returns:
            Tensor: Batch of predicted durations in log domain (B, Tmax).
        """
        return self._forward(xs, x_masks, False)

    def inference(self, xs, x_masks=None):
        """Inference duration.
        Args:
            xs (Tensor): Batch of input sequences (B, Tmax, idim).
            x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
        Returns:
            LongTensor: Batch of predicted durations in linear domain (B, Tmax).
        """
        return self._forward(xs, x_masks, True)


class LengthRegulator(torch.nn.Module):
    def __init__(self, pad_value=0.0):
        super(LengthRegulator, self).__init__()
        self.pad_value = pad_value

    def forward(self, dur, dur_padding=None, alpha=1.0):
        """
        Example (no batch dim version):
            1. dur = [2,2,3]
            2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4]
            3. token_mask = [[1,1,0,0,0,0,0],
                             [0,0,1,1,0,0,0],
                             [0,0,0,0,1,1,1]]
            4. token_idx * token_mask = [[1,1,0,0,0,0,0],
                                         [0,0,2,2,0,0,0],
                                         [0,0,0,0,3,3,3]]
            5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3]

        :param dur: Batch of durations of each frame (B, T_txt)
        :param dur_padding: Batch of padding of each frame (B, T_txt)
        :param alpha: duration rescale coefficient
        :return:
            mel2ph (B, T_speech)
        """
        assert alpha > 0
        dur = torch.round(dur.float() * alpha).long()
        if dur_padding is not None:
            dur = dur * (1 - dur_padding.long())
        token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device)
        dur_cumsum = torch.cumsum(dur, 1)
        dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0)

        pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device)
        token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None])
        mel2ph = (token_idx * token_mask.long()).sum(1)
        return mel2ph


class PitchPredictor(torch.nn.Module):
    def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
                 dropout_rate=0.1, padding='SAME'):
        """Initilize pitch predictor module.
        Args:
            idim (int): Input dimension.
            n_layers (int, optional): Number of convolutional layers.
            n_chans (int, optional): Number of channels of convolutional layers.
            kernel_size (int, optional): Kernel size of convolutional layers.
            dropout_rate (float, optional): Dropout rate.
        """
        super(PitchPredictor, self).__init__()
        self.conv = torch.nn.ModuleList()
        self.kernel_size = kernel_size
        self.padding = padding
        for idx in range(n_layers):
            in_chans = idim if idx == 0 else n_chans
            self.conv += [torch.nn.Sequential(
                torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
                                       if padding == 'SAME'
                                       else (kernel_size - 1, 0), 0),
                torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
                torch.nn.ReLU(),
                LayerNorm(n_chans, dim=1),
                torch.nn.Dropout(dropout_rate)
            )]
        self.linear = torch.nn.Linear(n_chans, odim)
        self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
        self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))

    def forward(self, xs):
        """

        :param xs: [B, T, H]
        :return: [B, T, H]
        """
        positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
        xs = xs + positions
        xs = xs.transpose(1, -1)  # (B, idim, Tmax)
        for f in self.conv:
            xs = f(xs)  # (B, C, Tmax)
        # NOTE: calculate in log domain
        xs = self.linear(xs.transpose(1, -1))  # (B, Tmax, H)
        return xs


class EnergyPredictor(PitchPredictor):
    pass


def mel2ph_to_dur(mel2ph, T_txt, max_dur=None):
    B, _ = mel2ph.shape
    dur = mel2ph.new_zeros(B, T_txt + 1).scatter_add(1, mel2ph, torch.ones_like(mel2ph))
    dur = dur[:, 1:]
    if max_dur is not None:
        dur = dur.clamp(max=max_dur)
    return dur


class FFTBlocks(nn.Module):
    def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, num_heads=2,
                 use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True):
        super().__init__()
        self.num_layers = num_layers
        embed_dim = self.hidden_size = hidden_size
        self.dropout = dropout if dropout is not None else hparams['dropout']
        self.use_pos_embed = use_pos_embed
        self.use_last_norm = use_last_norm
        if use_pos_embed:
            self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS
            self.padding_idx = 0
            self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1
            self.embed_positions = SinusoidalPositionalEmbedding(
                embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
            )

        self.layers = nn.ModuleList([])
        self.layers.extend([
            TransformerEncoderLayer(self.hidden_size, self.dropout,
                                    kernel_size=ffn_kernel_size, num_heads=num_heads)
            for _ in range(self.num_layers)
        ])
        if self.use_last_norm:
            if norm == 'ln':
                self.layer_norm = nn.LayerNorm(embed_dim)
            elif norm == 'bn':
                self.layer_norm = BatchNorm1dTBC(embed_dim)
        else:
            self.layer_norm = None

    def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False):
        """
        :param x: [B, T, C]
        :param padding_mask: [B, T]
        :return: [B, T, C] or [L, B, T, C]
        """
        padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask
        nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None]  # [T, B, 1]
        if self.use_pos_embed:
            positions = self.pos_embed_alpha * self.embed_positions(x[..., 0])
            x = x + positions
            x = F.dropout(x, p=self.dropout, training=self.training)
        # B x T x C -> T x B x C
        x = x.transpose(0, 1) * nonpadding_mask_TB
        hiddens = []
        for layer in self.layers:
            x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB
            hiddens.append(x)
        if self.use_last_norm:
            x = self.layer_norm(x) * nonpadding_mask_TB
        if return_hiddens:
            x = torch.stack(hiddens, 0)  # [L, T, B, C]
            x = x.transpose(1, 2)  # [L, B, T, C]
        else:
            x = x.transpose(0, 1)  # [B, T, C]
        return x


class FastspeechEncoder(FFTBlocks):
    def __init__(self, embed_tokens, hidden_size=None, num_layers=None, kernel_size=None, num_heads=2):
        hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
        kernel_size = hparams['enc_ffn_kernel_size'] if kernel_size is None else kernel_size
        num_layers = hparams['dec_layers'] if num_layers is None else num_layers
        super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads,
                         use_pos_embed=False)  # use_pos_embed_alpha for compatibility
        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(hidden_size)
        self.padding_idx = 0
        if hparams.get('rel_pos') is not None and hparams['rel_pos']:
            self.embed_positions = RelPositionalEncoding(hidden_size, dropout_rate=0.0)
        else:
            self.embed_positions = SinusoidalPositionalEmbedding(
                hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
            )

    def forward(self, txt_tokens):
        """

        :param txt_tokens: [B, T]
        :return: {
            'encoder_out': [T x B x C]
        }
        """
        encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
        x = self.forward_embedding(txt_tokens)  # [B, T, H]
        x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
        return x

    def forward_embedding(self, txt_tokens):
        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(txt_tokens)
        if hparams['use_pos_embed']:
            positions = self.embed_positions(txt_tokens)
            x = x + positions
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


class FastspeechDecoder(FFTBlocks):
    def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None):
        num_heads = hparams['num_heads'] if num_heads is None else num_heads
        hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
        kernel_size = hparams['dec_ffn_kernel_size'] if kernel_size is None else kernel_size
        num_layers = hparams['dec_layers'] if num_layers is None else num_layers
        super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads)