File size: 10,086 Bytes
d2fa653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os

import torch
import numpy as np
from modules.hifigan.hifigan import HifiGanGenerator
from vocoders.hifigan import HifiGAN
from inference.m4singer.m4singer.map import m4singer_pinyin2ph_func

from utils import load_ckpt
from utils.hparams import set_hparams, hparams
from utils.text_encoder import TokenTextEncoder
from pypinyin import pinyin, lazy_pinyin, Style
import librosa
import glob
import re


class BaseSVSInfer:
    def __init__(self, hparams, device=None):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.hparams = hparams
        self.device = device

        phone_list = ["<AP>", "<SP>", "a", "ai", "an", "ang", "ao", "b", "c", "ch", "d", "e", "ei", "en", "eng", "er", "f", "g", "h",
         "i", "ia", "ian", "iang", "iao", "ie", "in", "ing", "iong", "iou", "j", "k", "l", "m", "n", "o", "ong", "ou",
         "p", "q", "r", "s", "sh", "t", "u", "ua", "uai", "uan", "uang", "uei", "uen", "uo", "v", "van", "ve", "vn",
         "x", "z", "zh"]
        self.ph_encoder = TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')
        self.pinyin2phs = m4singer_pinyin2ph_func()
        self.spk_map = {"Alto-1": 0, "Alto-2": 1, "Alto-3": 2, "Alto-4": 3, "Alto-5": 4, "Alto-6": 5, "Alto-7": 6, "Bass-1": 7,
         "Bass-2": 8, "Bass-3": 9, "Soprano-1": 10, "Soprano-2": 11, "Soprano-3": 12, "Tenor-1": 13, "Tenor-2": 14,
         "Tenor-3": 15, "Tenor-4": 16, "Tenor-5": 17, "Tenor-6": 18, "Tenor-7": 19}

        self.model = self.build_model()
        self.model.eval()
        self.model.to(self.device)
        self.vocoder = self.build_vocoder()
        self.vocoder.eval()
        self.vocoder.to(self.device)

    def build_model(self):
        raise NotImplementedError

    def forward_model(self, inp):
        raise NotImplementedError

    def build_vocoder(self):
        base_dir = hparams['vocoder_ckpt']
        config_path = f'{base_dir}/config.yaml'
        ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key=
        lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1]
        print('| load HifiGAN: ', ckpt)
        ckpt_dict = torch.load(ckpt, map_location="cpu")
        config = set_hparams(config_path, global_hparams=False)
        state = ckpt_dict["state_dict"]["model_gen"]
        vocoder = HifiGanGenerator(config)
        vocoder.load_state_dict(state, strict=True)
        vocoder.remove_weight_norm()
        vocoder = vocoder.eval().to(self.device)
        return vocoder

    def run_vocoder(self, c, **kwargs):
        c = c.transpose(2, 1)  # [B, 80, T]
        f0 = kwargs.get('f0')  # [B, T]
        if f0 is not None and hparams.get('use_nsf'):
            # f0 = torch.FloatTensor(f0).to(self.device)
            y = self.vocoder(c, f0).view(-1)
        else:
            y = self.vocoder(c).view(-1)
            # [T]
        return y[None]

    def preprocess_word_level_input(self, inp):
        # Pypinyin can't solve polyphonic words
        text_raw = inp['text']

        # lyric
        pinyins = lazy_pinyin(text_raw, strict=False)
        ph_per_word_lst = [self.pinyin2phs[pinyin.strip()] for pinyin in pinyins if pinyin.strip() in self.pinyin2phs]

        # Note
        note_per_word_lst = [x.strip() for x in inp['notes'].split('|') if x.strip() != '']
        mididur_per_word_lst = [x.strip() for x in inp['notes_duration'].split('|') if x.strip() != '']

        if len(note_per_word_lst) == len(ph_per_word_lst) == len(mididur_per_word_lst):
            print('Pass word-notes check.')
        else:
            print('The number of words does\'t match the number of notes\' windows. ',
                  'You should split the note(s) for each word by | mark.')
            print(ph_per_word_lst, note_per_word_lst, mididur_per_word_lst)
            print(len(ph_per_word_lst), len(note_per_word_lst), len(mididur_per_word_lst))
            return None

        note_lst = []
        ph_lst = []
        midi_dur_lst = []
        is_slur = []
        for idx, ph_per_word in enumerate(ph_per_word_lst):
            # for phs in one word:
            # single ph like ['ai']  or multiple phs like ['n', 'i']
            ph_in_this_word = ph_per_word.split()

            # for notes in one word:
            # single note like ['D4'] or multiple notes like ['D4', 'E4'] which means a 'slur' here.
            note_in_this_word = note_per_word_lst[idx].split()
            midi_dur_in_this_word = mididur_per_word_lst[idx].split()
            # process for the model input
            # Step 1.
            #  Deal with note of 'not slur' case or the first note of 'slur' case
            #  j        ie
            #  F#4/Gb4  F#4/Gb4
            #  0        0
            for ph in ph_in_this_word:
                ph_lst.append(ph)
                note_lst.append(note_in_this_word[0])
                midi_dur_lst.append(midi_dur_in_this_word[0])
                is_slur.append(0)
            # step 2.
            #  Deal with the 2nd, 3rd... notes of 'slur' case
            #  j        ie         ie
            #  F#4/Gb4  F#4/Gb4    C#4/Db4
            #  0        0          1
            if len(note_in_this_word) > 1:  # is_slur = True, we should repeat the YUNMU to match the 2nd, 3rd... notes.
                for idx in range(1, len(note_in_this_word)):
                    ph_lst.append(ph_in_this_word[-1])
                    note_lst.append(note_in_this_word[idx])
                    midi_dur_lst.append(midi_dur_in_this_word[idx])
                    is_slur.append(1)
        ph_seq = ' '.join(ph_lst)

        if len(ph_lst) == len(note_lst) == len(midi_dur_lst):
            print(len(ph_lst), len(note_lst), len(midi_dur_lst))
            print('Pass word-notes check.')
        else:
            print('The number of words does\'t match the number of notes\' windows. ',
                  'You should split the note(s) for each word by | mark.')
            return None
        return ph_seq, note_lst, midi_dur_lst, is_slur

    def preprocess_phoneme_level_input(self, inp):
        ph_seq = inp['ph_seq']
        note_lst = inp['note_seq'].split()
        midi_dur_lst = inp['note_dur_seq'].split()
        is_slur = [float(x) for x in inp['is_slur_seq'].split()]
        print(len(note_lst), len(ph_seq.split()), len(midi_dur_lst))
        if len(note_lst) == len(ph_seq.split()) == len(midi_dur_lst):
            print('Pass word-notes check.')
        else:
            print('The number of words does\'t match the number of notes\' windows. ',
                  'You should split the note(s) for each word by | mark.')
            return None
        return ph_seq, note_lst, midi_dur_lst, is_slur

    def preprocess_input(self, inp, input_type='word'):
        """

        :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)}
        :return:
        """

        item_name = inp.get('item_name', '<ITEM_NAME>')
        spk_name = inp.get('spk_name', 'Alto-1')

        # single spk
        spk_id = self.spk_map[spk_name]

        # get ph seq, note lst, midi dur lst, is slur lst.
        if input_type == 'word':
            ret = self.preprocess_word_level_input(inp)
        elif input_type == 'phoneme':
            ret = self.preprocess_phoneme_level_input(inp)
        else:
            print('Invalid input type.')
            return None

        if ret:
            ph_seq, note_lst, midi_dur_lst, is_slur = ret
        else:
            print('==========> Preprocess_word_level or phone_level input wrong.')
            return None

        # convert note lst to midi id; convert note dur lst to midi duration
        try:
            midis = [librosa.note_to_midi(x.split("/")[0]) if x != 'rest' else 0
                     for x in note_lst]
            midi_dur_lst = [float(x) for x in midi_dur_lst]
        except Exception as e:
            print(e)
            print('Invalid Input Type.')
            return None

        ph_token = self.ph_encoder.encode(ph_seq)
        item = {'item_name': item_name, 'text': inp['text'], 'ph': ph_seq, 'spk_id': spk_id,
                'ph_token': ph_token, 'pitch_midi': np.asarray(midis), 'midi_dur': np.asarray(midi_dur_lst),
                'is_slur': np.asarray(is_slur), }
        item['ph_len'] = len(item['ph_token'])
        return item

    def input_to_batch(self, item):
        item_names = [item['item_name']]
        text = [item['text']]
        ph = [item['ph']]
        txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device)
        txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
        spk_ids = torch.LongTensor([item['spk_id']])[:].to(self.device)

        pitch_midi = torch.LongTensor(item['pitch_midi'])[None, :hparams['max_frames']].to(self.device)
        midi_dur = torch.FloatTensor(item['midi_dur'])[None, :hparams['max_frames']].to(self.device)
        is_slur = torch.LongTensor(item['is_slur'])[None, :hparams['max_frames']].to(self.device)

        batch = {
            'item_name': item_names,
            'text': text,
            'ph': ph,
            'txt_tokens': txt_tokens,
            'txt_lengths': txt_lengths,
            'spk_ids': spk_ids,
            'pitch_midi': pitch_midi,
            'midi_dur': midi_dur,
            'is_slur': is_slur
        }
        return batch

    def postprocess_output(self, output):
        return output

    def infer_once(self, inp):
        inp = self.preprocess_input(inp, input_type=inp['input_type'] if inp.get('input_type') else 'word')
        output = self.forward_model(inp)
        output = self.postprocess_output(output)
        return output

    @classmethod
    def example_run(cls, inp):
        from utils.audio import save_wav
        set_hparams(print_hparams=False)
        infer_ins = cls(hparams)
        out = infer_ins.infer_once(inp)
        os.makedirs('infer_out', exist_ok=True)
        f_name = inp['spk_name'] + ' | ' + inp['text']
        save_wav(out, f'infer_out/{f_name}.wav', hparams['audio_sample_rate'])