M4Singer / utils /cwt.py
m4singer
init
d2fa653
raw
history blame
4.34 kB
import librosa
import numpy as np
from pycwt import wavelet
from scipy.interpolate import interp1d
def load_wav(wav_file, sr):
wav, _ = librosa.load(wav_file, sr=sr, mono=True)
return wav
def convert_continuos_f0(f0):
'''CONVERT F0 TO CONTINUOUS F0
Args:
f0 (ndarray): original f0 sequence with the shape (T)
Return:
(ndarray): continuous f0 with the shape (T)
'''
# get uv information as binary
f0 = np.copy(f0)
uv = np.float32(f0 != 0)
# get start and end of f0
if (f0 == 0).all():
print("| all of the f0 values are 0.")
return uv, f0
start_f0 = f0[f0 != 0][0]
end_f0 = f0[f0 != 0][-1]
# padding start and end of f0 sequence
start_idx = np.where(f0 == start_f0)[0][0]
end_idx = np.where(f0 == end_f0)[0][-1]
f0[:start_idx] = start_f0
f0[end_idx:] = end_f0
# get non-zero frame index
nz_frames = np.where(f0 != 0)[0]
# perform linear interpolation
f = interp1d(nz_frames, f0[nz_frames])
cont_f0 = f(np.arange(0, f0.shape[0]))
return uv, cont_f0
def get_cont_lf0(f0, frame_period=5.0):
uv, cont_f0_lpf = convert_continuos_f0(f0)
# cont_f0_lpf = low_pass_filter(cont_f0_lpf, int(1.0 / (frame_period * 0.001)), cutoff=20)
cont_lf0_lpf = np.log(cont_f0_lpf)
return uv, cont_lf0_lpf
def get_lf0_cwt(lf0):
'''
input:
signal of shape (N)
output:
Wavelet_lf0 of shape(10, N), scales of shape(10)
'''
mother = wavelet.MexicanHat()
dt = 0.005
dj = 1
s0 = dt * 2
J = 9
Wavelet_lf0, scales, _, _, _, _ = wavelet.cwt(np.squeeze(lf0), dt, dj, s0, J, mother)
# Wavelet.shape => (J + 1, len(lf0))
Wavelet_lf0 = np.real(Wavelet_lf0).T
return Wavelet_lf0, scales
def norm_scale(Wavelet_lf0):
Wavelet_lf0_norm = np.zeros((Wavelet_lf0.shape[0], Wavelet_lf0.shape[1]))
mean = Wavelet_lf0.mean(0)[None, :]
std = Wavelet_lf0.std(0)[None, :]
Wavelet_lf0_norm = (Wavelet_lf0 - mean) / std
return Wavelet_lf0_norm, mean, std
def normalize_cwt_lf0(f0, mean, std):
uv, cont_lf0_lpf = get_cont_lf0(f0)
cont_lf0_norm = (cont_lf0_lpf - mean) / std
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_norm)
Wavelet_lf0_norm, _, _ = norm_scale(Wavelet_lf0)
return Wavelet_lf0_norm
def get_lf0_cwt_norm(f0s, mean, std):
uvs = list()
cont_lf0_lpfs = list()
cont_lf0_lpf_norms = list()
Wavelet_lf0s = list()
Wavelet_lf0s_norm = list()
scaless = list()
means = list()
stds = list()
for f0 in f0s:
uv, cont_lf0_lpf = get_cont_lf0(f0)
cont_lf0_lpf_norm = (cont_lf0_lpf - mean) / std
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) # [560,10]
Wavelet_lf0_norm, mean_scale, std_scale = norm_scale(Wavelet_lf0) # [560,10],[1,10],[1,10]
Wavelet_lf0s_norm.append(Wavelet_lf0_norm)
uvs.append(uv)
cont_lf0_lpfs.append(cont_lf0_lpf)
cont_lf0_lpf_norms.append(cont_lf0_lpf_norm)
Wavelet_lf0s.append(Wavelet_lf0)
scaless.append(scales)
means.append(mean_scale)
stds.append(std_scale)
return Wavelet_lf0s_norm, scaless, means, stds
def inverse_cwt_torch(Wavelet_lf0, scales):
import torch
b = ((torch.arange(0, len(scales)).float().to(Wavelet_lf0.device)[None, None, :] + 1 + 2.5) ** (-2.5))
lf0_rec = Wavelet_lf0 * b
lf0_rec_sum = lf0_rec.sum(-1)
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdim=True)) / lf0_rec_sum.std(-1, keepdim=True)
return lf0_rec_sum
def inverse_cwt(Wavelet_lf0, scales):
b = ((np.arange(0, len(scales))[None, None, :] + 1 + 2.5) ** (-2.5))
lf0_rec = Wavelet_lf0 * b
lf0_rec_sum = lf0_rec.sum(-1)
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdims=True)) / lf0_rec_sum.std(-1, keepdims=True)
return lf0_rec_sum
def cwt2f0(cwt_spec, mean, std, cwt_scales):
assert len(mean.shape) == 1 and len(std.shape) == 1 and len(cwt_spec.shape) == 3
import torch
if isinstance(cwt_spec, torch.Tensor):
f0 = inverse_cwt_torch(cwt_spec, cwt_scales)
f0 = f0 * std[:, None] + mean[:, None]
f0 = f0.exp() # [B, T]
else:
f0 = inverse_cwt(cwt_spec, cwt_scales)
f0 = f0 * std[:, None] + mean[:, None]
f0 = np.exp(f0) # [B, T]
return f0