|
import argparse |
|
import itertools |
|
import json |
|
import os |
|
import random |
|
import time |
|
from functools import partial |
|
|
|
import torch |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
def collate_fn(batches, tokenizer): |
|
|
|
images = [_['image'] for _ in batches] |
|
questions = [_['question'] for _ in batches] |
|
|
|
input_ids = tokenizer(questions, return_tensors='pt', padding='longest') |
|
|
|
return images, input_ids.input_ids, input_ids.attention_mask |
|
|
|
|
|
class VQADataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, train, test, prompt, few_shot): |
|
self.test = json.load(open(test)) |
|
self.prompt = prompt |
|
|
|
self.few_shot = few_shot |
|
if few_shot > 0: |
|
self.train = open(train).readlines() |
|
|
|
def __len__(self): |
|
return len(self.test) |
|
|
|
def __getitem__(self, idx): |
|
data = self.test[idx] |
|
image, question = data['image'], data['question'] |
|
|
|
few_shot_prompt = '' |
|
if self.few_shot > 0: |
|
few_shot_samples = random.sample(self.train, self.few_shot) |
|
for sample in few_shot_samples: |
|
sample = json.loads(sample.strip()) |
|
few_shot_prompt += self.prompt.format( |
|
sample['image'], |
|
sample['question']) + f" {sample['answer']}" |
|
|
|
return { |
|
'image': data['image'], |
|
'question': few_shot_prompt + self.prompt.format(image, question), |
|
} |
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler): |
|
|
|
def __init__(self, size): |
|
self._size = int(size) |
|
assert size > 0 |
|
self._rank = torch.distributed.get_rank() |
|
self._world_size = torch.distributed.get_world_size() |
|
self._local_indices = self._get_local_indices(size, self._world_size, |
|
self._rank) |
|
|
|
@staticmethod |
|
def _get_local_indices(total_size, world_size, rank): |
|
shard_size = total_size // world_size |
|
left = total_size % world_size |
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)] |
|
|
|
begin = sum(shard_sizes[:rank]) |
|
end = min(sum(shard_sizes[:rank + 1]), total_size) |
|
return range(begin, end) |
|
|
|
def __iter__(self): |
|
yield from self._local_indices |
|
|
|
def __len__(self): |
|
return len(self._local_indices) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--checkpoint', type=str, default='') |
|
parser.add_argument('--batch-size', type=int, default=1) |
|
parser.add_argument('--num-workers', type=int, default=1) |
|
parser.add_argument('--few-shot', type=int, default=0) |
|
parser.add_argument('--seed', type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
torch.distributed.init_process_group( |
|
backend='nccl', |
|
world_size=int(os.getenv('WORLD_SIZE', '1')), |
|
rank=int(os.getenv('RANK', '0')), |
|
) |
|
|
|
torch.cuda.set_device(torch.distributed.get_rank()) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint, device_map='cuda', trust_remote_code=True).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, |
|
trust_remote_code=True) |
|
tokenizer.padding_side = 'left' |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
|
|
prompt = '<img>data/vizwiz/test/{}</img>{} Answer:' |
|
|
|
random.seed(args.seed) |
|
dataset = VQADataset( |
|
train='data/vizwiz/vizwiz_train.jsonl', |
|
test='data/vizwiz/test.json', |
|
prompt=prompt, |
|
few_shot=args.few_shot, |
|
) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset=dataset, |
|
sampler=InferenceSampler(len(dataset)), |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False, |
|
collate_fn=partial(collate_fn, tokenizer=tokenizer), |
|
) |
|
|
|
outputs = [] |
|
for _, (images, input_ids, attention_mask) in tqdm(enumerate(dataloader)): |
|
pred = model.generate( |
|
input_ids=input_ids.cuda(), |
|
attention_mask=attention_mask.cuda(), |
|
do_sample=False, |
|
num_beams=1, |
|
max_new_tokens=10, |
|
min_new_tokens=1, |
|
length_penalty=1, |
|
num_return_sequences=1, |
|
output_hidden_states=True, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eod_id, |
|
eos_token_id=tokenizer.eod_id, |
|
) |
|
answers = [ |
|
tokenizer.decode(_[input_ids.size(1):].cpu(), |
|
skip_special_tokens=True).strip() for _ in pred |
|
] |
|
|
|
for image, answer in zip(images, answers): |
|
outputs.append({'image': image, 'answer': answer}) |
|
|
|
torch.distributed.barrier() |
|
|
|
world_size = torch.distributed.get_world_size() |
|
merged_outputs = [None for _ in range(world_size)] |
|
torch.distributed.all_gather_object(merged_outputs, outputs) |
|
|
|
merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] |
|
|
|
if torch.distributed.get_rank() == 0: |
|
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) |
|
results_file = f'vizwiz_testdev_{time_prefix}_fs{args.few_shot}_s{args.seed}.json' |
|
json.dump(merged_outputs, open(results_file, 'w'), |
|
ensure_ascii=False) |
|
|
|
torch.distributed.barrier() |
|
|