zohaibterminator
commited on
Commit
β’
1b10d27
1
Parent(s):
12edfef
Update app.py
Browse files
app.py
CHANGED
@@ -1,164 +1,164 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from audiorecorder import audiorecorder
|
4 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
5 |
-
import requests
|
6 |
-
from transformers import pipeline
|
7 |
-
from gtts import gTTS
|
8 |
-
import io
|
9 |
-
from langchain_core.runnables.base import RunnableSequence
|
10 |
-
from langchain_core.prompts import ChatPromptTemplate
|
11 |
-
from langchain_groq import ChatGroq
|
12 |
-
import os
|
13 |
-
import requests
|
14 |
-
from dotenv import load_dotenv
|
15 |
-
from langgraph.checkpoint.memory import MemorySaver
|
16 |
-
from langgraph.prebuilt import create_react_agent
|
17 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
18 |
-
|
19 |
-
st.set_page_config(page_title="Urdu Virtual Assistant", page_icon="π€") # set the page title and icon
|
20 |
-
|
21 |
-
# Load environment variables (if any)
|
22 |
-
load_dotenv()
|
23 |
-
|
24 |
-
user_id = "1" # example user id
|
25 |
-
|
26 |
-
llm = ChatGroq(
|
27 |
-
model="llama-3.1-70b-versatile",
|
28 |
-
temperature=0,
|
29 |
-
max_tokens=None,
|
30 |
-
timeout=None,
|
31 |
-
max_retries=5,
|
32 |
-
groq_api_key=os.getenv("GROQ_API_KEY")
|
33 |
-
)
|
34 |
-
|
35 |
-
search = TavilySearchResults(
|
36 |
-
max_results=2,
|
37 |
-
)
|
38 |
-
tools = [search]
|
39 |
-
|
40 |
-
agent_executor = create_react_agent(llm, tools)
|
41 |
-
|
42 |
-
# Initialize the wav2vec2 model for Urdu speech-to-text
|
43 |
-
pipe = pipeline("automatic-speech-recognition", model="kingabzpro/wav2vec2-large-xls-r-300m-Urdu")
|
44 |
-
|
45 |
-
def translate(target, text):
|
46 |
-
'''
|
47 |
-
Translates given text into target language
|
48 |
-
|
49 |
-
Parameters:
|
50 |
-
target (string): 2 character code to specify the target language.
|
51 |
-
text (string): Text to be translated.
|
52 |
-
|
53 |
-
Returns:
|
54 |
-
res (string): Translated text.
|
55 |
-
'''
|
56 |
-
url = "https://microsoft-translator-text.p.rapidapi.com/translate"
|
57 |
-
|
58 |
-
querystring = {"api-version":"3.0","profanityAction":"NoAction","textType":"plain", "to":target}
|
59 |
-
|
60 |
-
payload = [{ "Text": text }]
|
61 |
-
headers = {
|
62 |
-
"x-rapidapi-key": os.getenv("RAPIDAPI_LANG_TRANS"),
|
63 |
-
"x-rapidapi-host": "microsoft-translator-text.p.rapidapi.com",
|
64 |
-
"Content-Type": "application/json"
|
65 |
-
}
|
66 |
-
|
67 |
-
response = requests.post(url, json=payload, headers=headers, params=querystring)
|
68 |
-
res = response.json()
|
69 |
-
return res[0]["translations"][0]["text"]
|
70 |
-
|
71 |
-
|
72 |
-
def infer(user_input: str):
|
73 |
-
'''
|
74 |
-
Returns the translated response from the LLM in response to a user query.
|
75 |
-
|
76 |
-
Parameters:
|
77 |
-
user_id (string): User ID of a user.
|
78 |
-
user_input (string): User query.
|
79 |
-
|
80 |
-
Returns:
|
81 |
-
res (string): Returns a translated response from the LLM.
|
82 |
-
'''
|
83 |
-
|
84 |
-
user_input = translate("en", user_input) # translate user query to english
|
85 |
-
|
86 |
-
prompt = ChatPromptTemplate.from_messages( # define a prompt
|
87 |
-
[
|
88 |
-
(
|
89 |
-
"system",
|
90 |
-
"You are a compassionate and friendly AI virtual assistant. You will provide helpful answers to user queries using the provided tool to ensure the accuracy and relevance of your responses."
|
91 |
-
),
|
92 |
-
("human", "{user_input}")
|
93 |
-
]
|
94 |
-
)
|
95 |
-
|
96 |
-
runnable = prompt | agent_executor # define a chain
|
97 |
-
|
98 |
-
conversation = RunnableSequence( # wrap the chain along with chat history and user input
|
99 |
-
runnable,
|
100 |
-
)
|
101 |
-
|
102 |
-
response = conversation.invoke( # invoke the chain by giving the user input and the chat history
|
103 |
-
{"user_input": user_input},
|
104 |
-
)
|
105 |
-
|
106 |
-
res = translate("ur", response["messages"][-1].content) # translate the response to Urdu
|
107 |
-
return res
|
108 |
-
|
109 |
-
|
110 |
-
def text_to_speech(text, lang='ur'):
|
111 |
-
'''
|
112 |
-
Converts text to speech using gTTS.
|
113 |
-
|
114 |
-
Parameters:
|
115 |
-
text (string): Text to be converted to speech.
|
116 |
-
lang (string): Language for the speech synthesis. Default is 'ur' (Urdu).
|
117 |
-
Returns:
|
118 |
-
response_audio_io (BytesIO): BytesIO object containing the audio data.
|
119 |
-
'''
|
120 |
-
tts = gTTS(text, lang=lang)
|
121 |
-
response_audio_io = io.BytesIO()
|
122 |
-
tts.write_to_fp(response_audio_io)
|
123 |
-
response_audio_io.seek(0)
|
124 |
-
return response_audio_io
|
125 |
-
|
126 |
-
|
127 |
-
col1, col2 = st.columns([1, 5]) # Adjust the ratio to control the logo and title sizes
|
128 |
-
|
129 |
-
# Display the logo in the first column
|
130 |
-
with col1:
|
131 |
-
st.image("bolo_logo-removebg-preview.png", width=100) # Adjust the width as needed
|
132 |
-
|
133 |
-
# Display the title in the second column
|
134 |
-
with col2:
|
135 |
-
st.title("Urdu Virtual Assistant") # set the main title of the application
|
136 |
-
st.write("This application is a comprehensive speech-to-speech model designed to understand and respond in Urdu. It not only handles natural conversations but also has the capability to access and provide real-time information by integrating with the Tavily search engine. Whether you're asking for the weather or engaging in everyday dialogue, this assistant delivers accurate and context-aware responses, all in Urdu.")
|
137 |
-
|
138 |
-
# Add a text input box
|
139 |
-
audio = audiorecorder()
|
140 |
-
|
141 |
-
if len(audio) > 0:
|
142 |
-
# Save the audio to a file
|
143 |
-
audio.export("audio.wav", format="wav")
|
144 |
-
|
145 |
-
# Convert audio to text using the wav2vec2 model
|
146 |
-
with open("audio.wav", "rb") as f:
|
147 |
-
audio_bytes = f.read()
|
148 |
-
|
149 |
-
# Process the audio file
|
150 |
-
result = pipe("audio.wav")
|
151 |
-
user_query = result["text"]
|
152 |
-
|
153 |
-
with st.chat_message("Human"): # create the message box for human input
|
154 |
-
st.audio(audio.export().read()) # display the audio player
|
155 |
-
st.markdown(user_query)
|
156 |
-
|
157 |
-
# Get response from the LLM
|
158 |
-
response_text = infer(user_input=user_query)
|
159 |
-
response_audio = text_to_speech(response_text, lang='ur')
|
160 |
-
|
161 |
-
# Play the generated speech in the app
|
162 |
-
with st.chat_message("AI"):
|
163 |
-
st.audio(response_audio.read(), format='audio/mp3')
|
164 |
st.markdown(response_text)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from audiorecorder import audiorecorder
|
4 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
5 |
+
import requests
|
6 |
+
from transformers import pipeline
|
7 |
+
from gtts import gTTS
|
8 |
+
import io
|
9 |
+
from langchain_core.runnables.base import RunnableSequence
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
import os
|
13 |
+
import requests
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from langgraph.checkpoint.memory import MemorySaver
|
16 |
+
from langgraph.prebuilt import create_react_agent
|
17 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
18 |
+
|
19 |
+
st.set_page_config(page_title="Urdu Virtual Assistant", page_icon="π€") # set the page title and icon
|
20 |
+
|
21 |
+
# Load environment variables (if any)
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
user_id = "1" # example user id
|
25 |
+
|
26 |
+
llm = ChatGroq(
|
27 |
+
model="llama-3.1-70b-versatile",
|
28 |
+
temperature=0.3,
|
29 |
+
max_tokens=None,
|
30 |
+
timeout=None,
|
31 |
+
max_retries=5,
|
32 |
+
groq_api_key=os.getenv("GROQ_API_KEY")
|
33 |
+
)
|
34 |
+
|
35 |
+
search = TavilySearchResults(
|
36 |
+
max_results=2,
|
37 |
+
)
|
38 |
+
tools = [search]
|
39 |
+
|
40 |
+
agent_executor = create_react_agent(llm, tools)
|
41 |
+
|
42 |
+
# Initialize the wav2vec2 model for Urdu speech-to-text
|
43 |
+
pipe = pipeline("automatic-speech-recognition", model="kingabzpro/wav2vec2-large-xls-r-300m-Urdu")
|
44 |
+
|
45 |
+
def translate(target, text):
|
46 |
+
'''
|
47 |
+
Translates given text into target language
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
target (string): 2 character code to specify the target language.
|
51 |
+
text (string): Text to be translated.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
res (string): Translated text.
|
55 |
+
'''
|
56 |
+
url = "https://microsoft-translator-text.p.rapidapi.com/translate"
|
57 |
+
|
58 |
+
querystring = {"api-version":"3.0","profanityAction":"NoAction","textType":"plain", "to":target}
|
59 |
+
|
60 |
+
payload = [{ "Text": text }]
|
61 |
+
headers = {
|
62 |
+
"x-rapidapi-key": os.getenv("RAPIDAPI_LANG_TRANS"),
|
63 |
+
"x-rapidapi-host": "microsoft-translator-text.p.rapidapi.com",
|
64 |
+
"Content-Type": "application/json"
|
65 |
+
}
|
66 |
+
|
67 |
+
response = requests.post(url, json=payload, headers=headers, params=querystring)
|
68 |
+
res = response.json()
|
69 |
+
return res[0]["translations"][0]["text"]
|
70 |
+
|
71 |
+
|
72 |
+
def infer(user_input: str):
|
73 |
+
'''
|
74 |
+
Returns the translated response from the LLM in response to a user query.
|
75 |
+
|
76 |
+
Parameters:
|
77 |
+
user_id (string): User ID of a user.
|
78 |
+
user_input (string): User query.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
res (string): Returns a translated response from the LLM.
|
82 |
+
'''
|
83 |
+
|
84 |
+
user_input = translate("en", user_input) # translate user query to english
|
85 |
+
|
86 |
+
prompt = ChatPromptTemplate.from_messages( # define a prompt
|
87 |
+
[
|
88 |
+
(
|
89 |
+
"system",
|
90 |
+
"You are a compassionate and friendly AI virtual assistant. You will provide helpful answers to user queries using the provided tool to ensure the accuracy and relevance of your responses."
|
91 |
+
),
|
92 |
+
("human", "{user_input}")
|
93 |
+
]
|
94 |
+
)
|
95 |
+
|
96 |
+
runnable = prompt | agent_executor # define a chain
|
97 |
+
|
98 |
+
conversation = RunnableSequence( # wrap the chain along with chat history and user input
|
99 |
+
runnable,
|
100 |
+
)
|
101 |
+
|
102 |
+
response = conversation.invoke( # invoke the chain by giving the user input and the chat history
|
103 |
+
{"user_input": user_input},
|
104 |
+
)
|
105 |
+
|
106 |
+
res = translate("ur", response["messages"][-1].content) # translate the response to Urdu
|
107 |
+
return res
|
108 |
+
|
109 |
+
|
110 |
+
def text_to_speech(text, lang='ur'):
|
111 |
+
'''
|
112 |
+
Converts text to speech using gTTS.
|
113 |
+
|
114 |
+
Parameters:
|
115 |
+
text (string): Text to be converted to speech.
|
116 |
+
lang (string): Language for the speech synthesis. Default is 'ur' (Urdu).
|
117 |
+
Returns:
|
118 |
+
response_audio_io (BytesIO): BytesIO object containing the audio data.
|
119 |
+
'''
|
120 |
+
tts = gTTS(text, lang=lang)
|
121 |
+
response_audio_io = io.BytesIO()
|
122 |
+
tts.write_to_fp(response_audio_io)
|
123 |
+
response_audio_io.seek(0)
|
124 |
+
return response_audio_io
|
125 |
+
|
126 |
+
|
127 |
+
col1, col2 = st.columns([1, 5]) # Adjust the ratio to control the logo and title sizes
|
128 |
+
|
129 |
+
# Display the logo in the first column
|
130 |
+
with col1:
|
131 |
+
st.image("bolo_logo-removebg-preview.png", width=100) # Adjust the width as needed
|
132 |
+
|
133 |
+
# Display the title in the second column
|
134 |
+
with col2:
|
135 |
+
st.title("Urdu Virtual Assistant") # set the main title of the application
|
136 |
+
st.write("This application is a comprehensive speech-to-speech model designed to understand and respond in Urdu. It not only handles natural conversations but also has the capability to access and provide real-time information by integrating with the Tavily search engine. Whether you're asking for the weather or engaging in everyday dialogue, this assistant delivers accurate and context-aware responses, all in Urdu.")
|
137 |
+
|
138 |
+
# Add a text input box
|
139 |
+
audio = audiorecorder()
|
140 |
+
|
141 |
+
if len(audio) > 0:
|
142 |
+
# Save the audio to a file
|
143 |
+
audio.export("audio.wav", format="wav")
|
144 |
+
|
145 |
+
# Convert audio to text using the wav2vec2 model
|
146 |
+
with open("audio.wav", "rb") as f:
|
147 |
+
audio_bytes = f.read()
|
148 |
+
|
149 |
+
# Process the audio file
|
150 |
+
result = pipe("audio.wav")
|
151 |
+
user_query = result["text"]
|
152 |
+
|
153 |
+
with st.chat_message("Human"): # create the message box for human input
|
154 |
+
st.audio(audio.export().read()) # display the audio player
|
155 |
+
st.markdown(user_query)
|
156 |
+
|
157 |
+
# Get response from the LLM
|
158 |
+
response_text = infer(user_input=user_query)
|
159 |
+
response_audio = text_to_speech(response_text, lang='ur')
|
160 |
+
|
161 |
+
# Play the generated speech in the app
|
162 |
+
with st.chat_message("AI"):
|
163 |
+
st.audio(response_audio.read(), format='audio/mp3')
|
164 |
st.markdown(response_text)
|